Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.3.417

Transcriptional Analysis Responding to Propanol Stress in Escherichia coli  

Park, Hye-Jin (Department of Food Science & Biotechnology, Kyungsung University)
Lee, Jin-Ho (Department of Food Science & Biotechnology, Kyungsung University)
Publication Information
Journal of Life Science / v.22, no.3, 2012 , pp. 417-427 More about this Journal
Abstract
We compared the transcriptome in response to propanol stress in wild-type and propanol-resistant mutant Escherichia coli using the DNA microarray technique. The correlation value of RNA expression between the propanol-treated wild type and the untreated-one was about 0.949, and 50 genes were differentially expressed by more than twofold in both samples. The correlation value of RNA expression between the propanol-treated mutant and the untreated one was about 0.951, and 71 genes in two samples showed differential expression patterns. However, the values between the wild type and mutant, regardless of propanol addition, were 0.974-0.992 and only 1-2 genes were differentially expressed in the two strains. The representative characteristics among differentially expressed genes in W3110 or P19 treated with propanol compared to untreated samples were up-regulation of hest shock response genes and down-regulation of genes relating to ribosome biosynthesis. In addition, many genes were regulated by transcription regulation factors such as ArcA, CRP, FNR, H-NS, GatR, or PurR and overexpressed by sigma factor RpoH. We confirmed that RpoH mediated an important host defense function in propanol stress in E. coli W3110 and P19 by comparison of cell growth rate among the wild type, rpoH disruptant mutant, and rpoH-complemented strain.
Keywords
Propanol; microarray array; ArcA; rpoH; Escherichia coli;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lepage, C., Fayolle, F., Hermann, M. and Vandecasteele, J. P. 1987. Changes in membrane-lipid composition of Clostridium acetobutylicum during acetone butanol fermentation- Effects of solvents, growth temperature and pH. J. Gen. Microbiol. 133, 103-110.
2 Lin, Y. and Tanaka, S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69, 627-642.   DOI   ScienceOn
3 Liu, S. and Qureshi, N. 2009. How microbes tolerate ethanol and butanol. New Biotech. 26, 117-121.   DOI   ScienceOn
4 Nobelmann, B. and Lengeler, J. W. 1996. Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J. Bacteriol. 178, 6790-6795.
5 Ogawa, Y., Nitta, A., Uchiyama, H., Imamura, T., Shimoi, H. and Ito, K. 2000. Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J. Biosci. Bioeng. 90, 313-320.   DOI
6 Atsumi, S., Hanai, T. and Liao, J. C. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86-90.   DOI   ScienceOn
7 Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L. and Mori, H. 2006. Construction of E. coli K-12 in-frame, single- gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 1-11.
8 Baer, S. H., Blaschek, H. P. and Smith, T. L. 1987. Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol tolerant Clostridium acetobutylicum. Appl. Environ. Microbiol. 53, 2854-2861.
9 Bowles, L. K. and Ellefson, W. L. 1985. Effects of butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol. 50, 1165-1170.
10 Brynildsen, M. P. and Liao, J. C. 2009. An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol. Syst. Biol. 5, 1-13.
11 Buttke, T. M. and Ingram, L. O. 1978. Mechanism of ethanol-induced changes in lipid composition of Escherichia coli: Inhibition of saturated fatty acid synthesis in vivo. Biochemistry 17, 637-644.   DOI   ScienceOn
12 Buttke, T. M. and Ingram, L. O. 1980. Ethanol-induced changes in lipid composition of Escherichia coli: Inhibition of saturated fatty acid synthesis in vitro. Arch. Biochem. Biophys. 203, 565-571.   DOI   ScienceOn
13 Chuang, S. E. and Blattner, F. R. 1993. Characterization of twenty-six new heat shock genes of Escherichia coli. J. Bacteriol. 175, 5242-5252.
14 Cotter, P. A. and Gunsalus, R. P. 1992. Contribution of the fnr and arcA gene products in coordinate regulation of cytochrome o and d oxidase (cyoABCDE and cydAB) genes in Escherichia coli. FEMS Microbiol. Lett. 70, 31-36.
15 Fic, E., Bonarek, P., Gorecki, A., Kedracka-Krok, S., Mikolajczak, J., Polit, A., Tworzydlo, M., Dziedzicka- Wasylewska, M. and Wasylewski, Z. 2009. cAMP receptor protein from Escherichia coli as a model of signal transduction in proteins. J. Mol. Microbiol. Biotechnol. 17, 1-11.   DOI   ScienceOn
16 Alexandre, H., Rousseaux, I. and Charpentier, C. 1994. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol. Lett. 124, 17-22.   DOI   ScienceOn
17 Alexeeva, S., Hellingwerf, K. J. and Mattos, T. 2003. Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J. Bacteriol. 85, 204-209.
18 Alsaker, K. V., Paredes, C. and Papoutsakis, E. T. 2010. Metabolite stress and tolerance in the production of biofuels and chemicals: Gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotech. Bioeng. 105, 1131-1147.
19 Atsumi, S., Cann, A. F., Connor, M. R., Shen, C. R., Smith, K. M., Brynildsen, M. P., Chou, K. J. Y., Hanai, T. and Liao, J. C. 2007. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10, 305-311.   DOI
20 Park, S. J., Tseng, C. P. and Gunsalus, R. P. 1995. Regulation of succinate dehydrogenase (sdhCDAB) operon expression in Escherichia coli in response to carbon supply and anaerobiosis: role of ArcA and Fnr. Mol. Microbiol. 15, 473-482.   DOI   ScienceOn
21 Qureshi, N. and Blaschek, H. P. 2001. Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotech. 27, 287-291.   DOI   ScienceOn
22 Repoila, F., Majdalani, N. and Gottesman, S. 2003. Small non-coding RNAs, coordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol. Microbiol. 48, 855-861.   DOI   ScienceOn
23 Salgueiro, S. P., Sa-Correia, I. and Novais, J. M. 1988. Ethanol-induced leakage in Saccharomyces cerevisiae: Kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity. Appl. Environ. Microbiol. 54, 903-909.
24 Salmon, K., Hung, S. P., Mekjian, K., Baldi, P., Hatfield, G. W. and Gunsalus, R. P. 2003. Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J. Biol. Chem. 278, 29837-29855.   DOI
25 Sambrook, J. and Russell, D. W. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
26 Gama-Castro, S., Jimenez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Penaloza-Spinola, M. I., Contreras- Moreira, B., Segura-Salazar, J., Muniz-Rascado, L., Martinez-Flores, I., Salgado, H., Bonavides-Martinez, C., Abreu-Goodger, C., Rodriguez-Penagos, C., Miranda-Rios, J., Morett, E., Merino, E., Huerta, A. M., Trevino-Quintanilla, L. and Collado-Vides, J. 2008. RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res. 36, 120-124.   DOI   ScienceOn
27 Shen, C. R. and Liao, J. C. 2008. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 10, 312-320.   DOI   ScienceOn
28 Terracciano, J. S. and Kashket, E. R. 1986. Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum. Appl. Environ. Microbiol. 52, 86-91.
29 Tomas, C. A., Welker, N. E. and Papoutsakis, E. T. 2003. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and large changes in the cell's transcriptional program. Appl. Environ. Microbiol. 69, 4951-4965.   DOI   ScienceOn
30 Gonzalez, R., Tao, H., Purvis, J. E., York, S. W., Shanmugam, K. T. and Ingram, L. O. 2003. Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: Comparison of KO11 (Parent) to LY01 (resistant mutant). Biotechnol. Prog. 19, 612-623.   DOI   ScienceOn
31 Kubota, S., Takeo, I., Kume, K., Kanai, M., Shitamukai, A., Mizunuma, M., Miyakawa, T., Shimoi, H., Iefuji, H. and Hirata, D. 2004. Effect of ethanol on cell growth of budding yeast: Genes that are important for cell growth in the presence of ethanol. Biosci. Biotechnol. Biochem. 68, 968-972.   DOI   ScienceOn