• Title/Summary/Keyword: Resistant genes

Search Result 857, Processing Time 0.03 seconds

Detection of Vancomycin-Resistant Enterococci and Related Genes Using VITEK 2 System and Multiplex Real-time PCR Assay (VITEK 2 시스템과 Multiplex Real-time PCR을 이용한 반코마이신 내성 장알균(VRE)과 내성관련 유전자 검출)

  • Jeong, Min-Kyung;Yu, Young-Bin;Kim, Sang-Ha;Kim, Sunghyun;Kim, Young-Kwon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.401-406
    • /
    • 2017
  • In this study, using the VITEK 2 system, 74 samples (22.6%) out of 327 specimens were identified by the growth of Enterococcosel media (EV6 agar) supplemented with $6{\mu}g/mL$ of vancomycin. Enterococcus faecium was identified as 55 strains (74.3%), Enterococcus casseliflavus as 2 strains (2.7%), Enterococcus avium as 1 strain (1.4%), and Enterococcus gallinarum as 16 strains (21.6%). Among the 55 phenotypes of Enterococcus faecium, 42 (76.4%), 9 (16.4%), and 4 strains (7.3%) showed the vanA, vanB, and vanC phenotype, respectively. The 16 strains of Enterococcus gallinarum and 2 strains of Enterococcus casseliflavus showed the vanC phenotype and the 1 strain of Enterococcus avium had the vanB phenotype. The one strain of Enterococcus faecium propagated only in EV4 and was susceptible to both vancomycin and teicoplanin according to the antimicrobial susceptibility test using the VITEK 2 system. The vancomycin resistance phenotype gene was not detected by PCR. A total of 327 specimens were cultured in Enterococcosel broth supplemented with $6{\mu}g/mL$ of vancomycin (EV6 broth), and 120 strains (36.7%) were isolated. These 120 strains were subjected to vancomycin resistant genotyping by a multiplex real-time polymerase chain reaction and 51 strains (42.5%) showed vanA; 5 strains (4.2%) showed vanA and vanC; and 18 strains (15%) showed vanC. Vancomycin resistance genotypes were not detected in the remaining 46 strains (38.3%).

Application of a New Conjugation Method to Fish Pathogenic Bacteria Containing R Plasmid for the Analysis of Drug-Resistant Status in Aquaculture (새로운 conjugation 방법을 응용한 R plasmid 함유 어병세균의 분리와 양식장 내성균의 현황 분석)

  • Yoo Min Ho;Jeong Joon Beom;Kim Eun Heui;Lee Hyoung Ho;Jeong Hun Do
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.2
    • /
    • pp.115-121
    • /
    • 2002
  • To develop a new method of conjugation and to determine the distribution of R plasimds, we isolated multi-drug resistant strains from fish pathogenic bacteria in the farms of south and east seacoasts of Korea. Out of the 134 isolates examined, 10 showed resistance to chloramphenicol, tetracycline, streptomycin, ampicillin, colistin, nalidixic acid, oxolinic acid and kanamycin. One out of 10 multi-drug resistance bacteria, Vibfio damsela JE1 (V. damsela JE1), contained transferable R plasmid of chlorarnphenicol- tetracycline resistance genes and other nucleic acids encoding ampicillin and kanamycin resistance. The presence of the R plasmid was confirmed by conjugation using the chromocult medium (CC) as a selective and differential medium for transconiugants with identification based on the growth or colors of the colonies. The frequency of R plasmid transfer with filter mating method was come out much higher than that of broth mating method and appeared to be dependent upon the mating time and temperature. The optimum conditions for filter mating method were found to be 30$^{\circ}C$ and 24hrs as mating temperature and period, respectively, Moreover, donor cells with R plasmid, both isolate and standard bacteria, were shown to have an ability to transfer the plasmid against Escherichia coli K-12 HB101 (E. coli HB101) and Edwardsiella tarda (E. tarda) RE14 at fairly high frequencies, finally, we isolated 3 isolates of Sphingomonas sp., carrying R plasmid from 12 multi-drug resistant bacteria in normal microflora of the flounder (Paralichthys olivaceus) group used for the isolation of V emsela JE1 four months before. The same size and gene transfer chayateristics of R plasimds with those of V damsela JE1 confirmed that normal microflora have the reservoir activity for R plasmid in natural aquatic environment.

Mutations of katG and inhA in MDR M. tuberculosis (국내에서 분리된 다제 내성 결핵균의 katG 와 inhA 변이 다양성 및 그 빈도)

  • Lin, Hai Hua;Kim, Hee-Youn;Yun, Yeo-Jun;Park, Chan Geun;Kim, Bum-Joon;Park, Young-Gil;Kook, Yoon-Hoh
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.2
    • /
    • pp.128-138
    • /
    • 2007
  • Backgrounds: Mutations of katG and inhA (ORF and promoter) are known to be related to isoniazid (INH) resistance of Mycobacterium tuberculosis. Because reports on these mutations in Korean isolates are limited (i.e. only the frequency of katG codon 463 was evaluated.), we tried to know the kinds of mutations of two genes and their frequencies in INH resistant Korean M. tuberculosis strains. Methods: PCR was performed to amplify katG (2,223 bp), inhA ORF (-77~897, 975 bp), and inhA promoter (-168~80, 248 bp) from 29 multidrug resistant M. tuberculosis (MDR-TB) DNAs prepared by bead beater-phenol method. Their sequences were determined and analyzed by ABI PRISM 3730 XL Analyzer and MegAlign package program, respectively. Results: All of the isolates had more than one mutation in katG or inhA gene. Twenty seven (93%) of 29 tested strains had katG mutations, which suggests that katG is a critical gene determining INH resistance of M. tuberculosis. Amino acid substitutions, such as Arg463Leu and Ser315Thr, due to point mutations of the katG were the most frequent (62.1% and 55.2%) mutations. In addition, deletion of the katG gene was frequently observed (17.2%). Analyzed Korean MDR-TB isolates also had variable inhA mutations. Point mutation of inhA promoter region, such as -15 ($C{\rightarrow}T$) was frequently found. Substitution of amino acid (Lsy8Asn) due to point mutation ($AAA{\rightarrow}AAC$) of inhA ORF was found in 1 isolate. Interestingly, 14 point mutated types that were not previously reported were newly found. While four types resulted in amino acid change, the others were silent mutations. Conclusions: Although it is not clear that the relationship of these newly found mutations with INH resistance, they show marked diversity in Korean MDR-TB strains. It also suggests their feasibility as a molecular target to supplement determining the INH resistance of clinical isolates because of the possible existence of low-level INH resistant strains.

Efficacy of Three Antiviral Agents and Resistant Cultivars on Tomato Yellow Leaf Curl Virus in Tomato (토마토황화잎말림바이러스병에 대한 저항성 품종과 항바이러스 활성 물질 3종의 효과 검증)

  • Kwon, Yongnam;Cha, Byeongjin;Kim, Mikyeong
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.82-91
    • /
    • 2022
  • Recently, several in vitro studies have reported antiviral activity of agents of systemic acquired resistance against plant virus infection, but the approach has not been applied in a wide range of agricultural fields. The objective of this study was to evaluate the inhibitory effect of the exogenous application of salicylic acid (SA), chitosan (CH), or eugenol (EG) in tomato yellow leaf curl virus (TYLCV) infection of greenhouse-grown tomato plants. In vitro, the initial time of symptom was observed in TYLCV-infected plants (VP) of the resistant cultivar 'Superdotaerang' at 12 days post inoculation (dpi) after application of antiviral agents. At 32 dpi, the disease rate of TYLCV in the CHT+VP (0.1% chitosan and virus infected control) treated plants was 87.5%, lower than that of the other treatment. However, the virus content in the CHT+VP treated plants was higher than those of the other treatments, and SA, EG, and CH did not show significant effect on plant height or shoot and root fresh weight. Our results from summer-cultivated greenhouse-grown tomatoes show that none of the tested agents had an inhibitory activity on viral infection or yield of tomato 'Dotaerangsola'cultivar. In contrast, all treated 'TY Giants' cultivars that possessed TYLCV resistance genes Ty-1 and Ty-3a did not show typical symptoms and the virus content was remarkably lower than those in the TYLCV treated plants in 'Superdotaerang'. The results of this research indicated that the planting of resistant tomato cultivars was effective method instead of using SA, EG, and CH (known as resistance-inducing factors for control) of TYLCV in the field.

Screening of salt-tolerance plants using transgenic Arabidopsis that express a salt cress cDNA library (Salt cress 유전자의 형질전환을 통한 내염성 식물체 선별)

  • Baek, Dongwon;Choi, Wonkyun;Kang, Songhwa;Shin, Gilok;Park, Su Jung;Kim, Chanmin;Park, Hyeong Cheol;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Salt cress (Thellungiella halophila or Thellungiella parvula), species closely related to Arabidopsis thaliana, represents an extremophile adapted to harsh saline environments. To isolate salt-tolerance genes from this species, we constructed a cDNA library from roots and leaves of salt cress plants treated with 200 mM NaCl. This cDNA library was subsequently shuttled into the destination binary vector [driven by the cauliflower mosaic virus (CaMV) 35S promoter] designed for plant transformation and expression via recombination- assisted cloning. In total, 305,400 pools of transgenic BASTA-resistant lines were generated in Arabidopsis using either T. halophila or T. parvula cDNA libraries. These were used for functional screening of genes involved in salt tolerance. Among these pools, 168,500 pools were used for primary screening to date from which 7,157 lines showed apparent salt tolerant-phenotypes in the initial screen. A secondary screen has now identified 165 salt tolerant transgenic lines using 1,551 (10.6%) lines that emerged in the first screen. The prevalent phenotype in these lines includes accelerated seed germination often accompanied by faster root growth compared to WT Arabidopsis under salt stress condition. In addition, other lines showed non-typical development of stems and flowers compared to WT Arabidopsis. Based on the close relationship of the tolerant species to the target species we suggest this approach as an appropriate method for the large-scale identification of salt tolerance genes from salt cress.

Mechanism of Growth Inhibition in Herbicide-Resistant Transgenic Rice Overexpressing Protoporphyrinogen Oxidase (Protox) Gene (Protoporphyrinogen Oxidase (Protox) 유전자 과다발현 제초제 저항성 형질전환 벼의 생육저해 기작)

  • Kuk, Yong-In;Shin, Ji-San;Yun, Young-Beom;Kwon, Oh-Do
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.122-134
    • /
    • 2010
  • We investigated the levels of resistance and accumulation of terapyrroles, reactive oxygen species, lipid peroxidation, and antioxidative enzymes for reasons of growth reduction in herbicide-transgenic rice overexpressing Myxococcus xanthus, Arabidopsis thaliana, and human protoporphyrinogen oxidase (Protox) genes. The transgenic rice overexpressing M. xanthus (MX, MX1, PX), A. thaliana (AP31, AP36, AP37), and human (H45, H48, H49) Protox genes showed 43~65, 41~72 and 17~70-fold more resistance to oxyfluorfen, respectively, than the wild type. Among transgenic rice lines overexpressing Protox genes, several lines showed normal growth compared with the wild type, but several lines showed in reduction of plant height and shoot fresh weight under different light conditions. However, reduction of plant height of AP37 was much higher than other lines for the experimental period. On the other hand, the reduction of plant height and shoot fresh weight in the transgenic rice was higher in high light condition than in low light condition. Enhanced levels of Proto IX were observed in transgenic lines AP31, AP37, and H48 at 7 days after seeding (DAS) and transgenic lines PX, AP37, and H48 at 14 DAS relative to wild type. There were no differences in Mg-Proto IX of transgenic lines except for H41 and H48 and Mg-Proto IX monomethyl ester of transgenic lines except for MX, MX1, and PX. Although accumulation of tetrapyrrole intermediates was observed in transgenic lines, their tetrapyrrole accumulation levels were not enough to inhibit growth of transgenic rice. There were no differences in reactive oxygen species, MDA, ALA synthesizing capacity, and chlorophyll between transgenic lines and wild type indicating that accumulated tetrapyrrole intermediate were apparently not high enough to inhibit growth of transgenic rice. Therefore, the growth reduction in certain transgenic lines may not be caused by a single factor such as Proto IX, but by interaction of many other factors.

Development and Evaluation of Multiplex PCR for the Detection of Carbapenemase-Producing Enterobacteriaceae (카바페넴분해효소 생성 장내세균 검출을 위한 Multiplex PCR의 개발 및 평가)

  • Kim, Si Hyun;Bae, Il Kwon;Kim, Na Young;Song, Sae Am;Kim, Sunjoo;Jeong, Joseph;Shin, Jeong Hwan
    • Annals of Clinical Microbiology
    • /
    • v.22 no.1
    • /
    • pp.9-13
    • /
    • 2019
  • Background: The isolation of carbapenemase-producing Enterobacteriaceae (CPE) has become increasingly common. Continuous surveillance for these organisms is essential because their infections are closely related to outbreaks of illness and are associated with high mortality rates. The aim of this study was to develop and evaluate multiplex PCR as a means of detecting several important CPE genes simultaneously. Methods: We aimed to develop a multiplex PCR that could detect seven CPE genes simultaneously. The multiplex PCR was composed of seven primer sets for the detection of KPC, IMP, VIM, NDM-1, GES, OXA-23, and OXA-48. We designed different PCR product sizes of at least 100 bp. We evaluated the performance of this new test using 69 CPE-positive clinical isolates. Also, we confirmed the specificity to rule out false-positive reactions by using 71 carbapenem-susceptible clinical strains. Results: A total of 69 CPE clinical isolates showed positive results and were correctly identified as KPC (N=14), IMP (N=13), OXA-23 (N=12), OXA-48 (N=11), VIM (N=9), GES (N=5), and NDM (N=5) by the multiplex PCR. All 71 carbapenem-susceptible clinical isolates, including Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, showed negative results. Conclusion: This multiplex PCR can detect seven CPE genes at a time and will be useful in clinical laboratories.

Identification of a Locus Associated with Resistance to Phytophthora sojae in the Soybean Elite Line 'CheonAl' (콩 우수 계통 '천알'에서 발견한 역병 저항성 유전자좌)

  • Hee Jin You;Eun Ji Kang;In Jeong Kang;Ji-Min Kim;Sung-Taeg Kang;Sungwoo Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.134-146
    • /
    • 2023
  • Phytophthora root rot (PRR) is a major soybean disease caused by an oomycete, Phytophthora sojae. PRR can be severe in poorly drained fields or wet soils. The disease management primarily relies on resistance genes called Rps (resistance to P. sojae). This study aimed to identify resistance loci associated with resistance to P. sojae isolate 40468 in Daepung × CheonAl recombinant inbred line (RIL) population. CheonAl is resistant to the isolate, while Daepung is generally susceptible. We genotyped the parents and RIL population via high-throughput single nucleotide polymorphism genotyping and constructed a set of genetic maps. The presence or absence of resistance to P. sojae was evaluated via hypocotyl inoculation technique, and phenotypic distribution fit to a ratio of 1:1 (R:S) (χ2 = 0.57, p = 0.75), indicating single gene mediated inheritance. Single-marker association and the linkage analysis identified a highly significant genomic region of 55.9~56.4 megabase pairs on chromosome 18 that explained ~98% of phenotypic variance. Many previous studies have reported several Rps genes in this region, and also it contains nine genes that are annotated to code leucine-rich repeat or serine/threonine kinase within the approximate 500 kilobase pairs interval based on the reference genome database. CheonAl is the first domestic soybean genotype characterized for resistance against P. sojae isolate 40468. Therefore, CheonAl could be a valuable genetic source for breeding resistance to P. sojae.

Claritromycin Resistance and Helicobacter pylori Genotypes in Italy

  • Francesco Vincenzo De;Margiotta Marcella;Zullo Angelo;Hassan Cesare;Valle Nicolar Della;Burattini Osvaldo;D'Angel Roberto;Stoppino Giuseppe;Cea Ugo;Giorgio Floriana;Monno Rosa;Morini Sergio;Panella Carmine
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.660-664
    • /
    • 2006
  • The relationship between H. pylori clarithromycin resistance and genetic pattern distribution has been differently explained from different geographic areas. Therefore, we aimed to assess the clarithromycin resistance rate, to evaluate the bacterial genetic pattern, and to search for a possible association between clarithromycin resistance and cagA or vacA genes. This prospective study enrolled 62 consecutive H. pylori infected patients. The infection was established by histology and rapid urease test. Clarithromycin resistance, cagA and vacA status, including s/m subtypes, were assessed on paraffin-embedded antral biopsy specimens by TaqMan real time polymerase chain reaction (PCR). Primary clarithromycin resistance was detected in 24.1 % of cases. The prevalence of cagA was 69.3%, and a single vacA mosaicism was observed in 95.1 % cases. In detail, the s1m1 was observed in 23 (38.9%) patients, the s1m2 in 22 (37.2%), and the s2m2 in 14 (23.7%), whereas the s2m1 combination was never found. The prevalence of cagA and the vacA alleles distribution did not significantly differ between susceptible and resistant strains. Primary clarithromycin resistance is high in our area. The s1m1 and s1m2 are the most frequent vacA mosaicisms. There is no a relationship between clarithromycin resistance and bacterial genotypic pattern and/or cagA positivity.

Susceptibility of Anthonomus grandis (Cotton Boll Weevil) and Spodoptera frugiperda (Fall Armyworm) to a Cry1Ia-type Toxin from a Brazilian Bacillus thuringiensis Strain

  • Grossi-De-Sa, Maria Fatima;De Magalhaes, Mariana Quezado;Silva, Marilia Santos;Silva, Shirley Margareth.Buffon;Dias, Simoni Campos;Nakasu, Erich Yukio Tempel;Brunetta, Patricia Sanglard Felipe;Oliveira, Gustavo Ramos;De Oliveira Neto, Osmundo Brilhante;De Oliveira, Raquel Sampaio;Soares, Luis Henrique Barros;Ayub, Marco Antonio Zachia;Siqueira, Herbert Alvaro Abreu;Figueira, Edson L.Z.
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.773-782
    • /
    • 2007
  • Different isolates of the soil bacterium Bacillus thuringiensis produce multiple crystal (Cry) proteins toxic to a variety of insects, nematodes and protozoans. These insecticidal Cry toxins are known to be active against specific insect orders, being harmless to mammals, birds, amphibians, and reptiles. Due to these characteristics, genes encoding several Cry toxins have been engineered in order to be expressed by a variety of crop plants to control insectpests. The cotton boll weevil, Anthonomus grandis, and the fall armyworm, Spodoptera frugiperda, are the major economically devastating pests of cotton crop in Brazil, causing severe losses, mainly due to their endophytic habit, which results in damages to the cotton boll and floral bud structures. A cry1Ia-type gene, designated cry1Ia12, was isolated and cloned from the Bt S811 strain. Nucleotide sequencing of the cry1Ia12 gene revealed an open reading frame of 2160 bp, encoding a protein of 719 amino acid residues in length, with a predicted molecular mass of 81 kDa. The amino acid sequence of Cry1Ia12 is 99% identical to the known Cry1Ia proteins and differs from them only in one or two amino acid residues positioned along the three domains involved in the insecticidal activity of the toxin. The recombinant Cry1Ia12 protein, corresponding to the cry1Ia12 gene expressed in Escherichia coli cells, showed moderate toxicity towards first instar larvae of both cotton boll weevil and fall armyworm. The highest concentration of the recombinant Cry1Ia12 tested to achieve the maximum toxicities against cotton boll weevil larvae and fall armyworm larvae were 230 ${\mu}g/mL$ and 5 ${\mu}g/mL$, respectively. The herein demonstrated insecticidal activity of the recombinant Cry1Ia12 toxin against cotton boll weevil and fall armyworm larvae opens promising perspectives for the genetic engineering of cotton crop resistant to both these devastating pests in Brazil.