• Title/Summary/Keyword: Resistance-capacitance

Search Result 459, Processing Time 0.025 seconds

An Efficient Timing-level Gate-delay Calculation Algorithm (효율적인 타이밍 수준 게이트 지연 계산 알고리즘)

  • Kim, Boo-Sung;Kim, Sung-Man;Kim, Seok-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.603-605
    • /
    • 1998
  • In recent years, chip delay estimation has had an increasingly important impact on overall design technology. The analysis of the timing behavior of an ASIC should be based not only on the delay characteristics of gates and interconnect circuits but also on the interactions between them. This model plays an important role in our CAD system to analyze the ASIC timing characteristics accurately, together with two-dimensional gate delay table model, AWE algorithm and effective capacitance concept. In this paper, we present an efficient algorithm which accounts for series resistance by computing a reduced-order approximation for the driving-point admittance of an RC-tree and an effective capacitance equation that captures the complete waveform response accurately.

  • PDF

A Characteristics on Impedance of Degraded Thyristor with Heat and Voltage Stress (열화된 사이리스터 소자의 임피던스 특성)

  • Seo, Kil-Soo;Kim, Hyung-Woo;Kim, Ki-Hyun;Kim, Nam-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1351-1352
    • /
    • 2006
  • In this paper, the impedance properties of degraded thyristor with heat and voltage were presented. As degraded thyristor, 8 thyristors with each other different reverse blocking voltage used. Its impedance and resistance properties were measured from frequency 100Hz to 10MHz applied with bias voltage from 0V to 40V. As a result, at low frequency region, that is, at the frequency 100-10kHz, the abrupt increasement of its capacitance was confirmed. And also, at high frequency region, the capacitance peak move toward low frequency in the region of frequency 4 - 6MHz as degradation of thyristor.

  • PDF

Effects of the Electrical Characteristics of Capacitive Relative Humidity Sensor by Polyimide Film and Upper Electrode Grain by Sputtering Method (폴리이미드 박막과 스퍼터링 방법으로 증착한 상부금속 그레인이 용량형 습도센서의 전기적 특성에 미치는 영향)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.224-228
    • /
    • 2011
  • This research, integratable capacitive relative humidity sensor was produced using polyimide on glass substrate. Also, at the time of upper electrode formation, upper electrode grain size was affected by giving changes to sputtering condition. Through this analyzing electrical characteristics affect from capacitive relative humidity sensor was possible. Capacitance of capacitive relative humidity sensor was 330 pF, linearity of 0.6%FS and it showed less than 3% of low hysterisis. Specially, hysterisis was affected more from interface than interstitial. Also was affected by the grain size which is one of the formation condition of upper electrode.

Ionic Conductivity by A Complex Admittance Method

  • Chy Hyung Kim;Eung Dong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.495-500
    • /
    • 1989
  • The ionic conductivity of polycrystalline, glass, and glass-ceramic silicates was measured using two-terminal AC method with blocking electrode over a frequency range of 100 Hz to 100 KHz in the temperature range of $200^{\circ}C$ to $320^{\circ}C$. Analysing the capacitance (C), susceptance (B), impedance (Z), and conductance (G) under the given conditions, an equivalent circuit containing temperature and frequency dependent component is proposed. Higher capacitance could be observed in the low frequency region and on the improved ionic migration conditions i.e., at higher temperature in a better ionic conductor. Also the electrode polarization built up at the electrode-specimen interface could be sorted out above 10 KHz. However, grain boundary contribution couldn't be extracted from the bulk resistance over the frequency range measured here.

Electrostatic discharge simulation of tunneling magnetoresistance devices (터널링 자기저항 소자의 정전기 방전 시뮬레이션)

  • Park, S.Y.;Choi, Y.B.;Jo, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • Electrostatic discharge characteristics were studied by connecting human body model (HBM) with tunneling magnetoresistance (TMR) device in this research. TMR samples were converted into electrical equivalent circuit with HBM and it was simulated utilizing PSPICE. Discharge characteristics were observed by changing the component values of the junction model in this equivalent circuit. The results show that resistance and capacitance of the TMR junction were determinative components that dominate the sensitivity of the electrostatic discharge(ESD). Reducing the resistance oi the junction area and lead line is more profitable to increase the recording density rather than increasing the capacitance to improve the endurance for ESD events. Endurance at DC state was performed by checking breakdown and failure voltages for applied DC voltage. HBM voltage that a TMR device could endure was estimated when the DC failure voltage was regarded as the HBM failure voltage.

Bioelectrical Impedance Analysis at Popliteal Regions of Human Body using BIMS

  • Kim, J.H.;Kim, S.S.;Kim, S.H.;Baik, S.W.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Bioelectrical impedance (BI) at popliteal regions was measured using a bioelectrical impedance measurement system (BIMS), which employs the multi-frequency and the two-electrode method. Experiments were performed as follows. First, a constant AC current of $800{\mu}A$ was applied to the popliteal regions (left and right) and the BI was measured at eight different frequencies from 10 to 500 kHz. When the applied frequency greater than 50 kHz was applied to human's popliteal regions, the BI was decreased significantly. Logarithmic plot of impedance vs. frequency indicated two different mechanisms in the impedance phenomena before and after 50 kHz. Second, the relationship between resistance and reactance was obtained with respect to the applied frequency using BI (resistance and reactance) acquired from the popliteal regions. The phase angle (PA) was found to be strongly dependent on frequency. At 50 kHz, the PA at the right popliteal region was $7.8^{\circ}$ slightly larger than $7.6^{\circ}$ at the left popliteal region. Third, BI values of extracellular fluid (ECF) and intracellular fluid (ICF) were calculated using BIMS. At 10 kHz, the BI values of ECF at the left and right popliteal regions were $1664.14{\Omega}$ and $1614.08{\Omega}$, respectively. The BI values of ECF and ICF decreased sharply in the frequency range of 10 to 50 kHz, and gradually decreased up to 500 kHz. Logarithmic plot of BI vs. frequency shows that the BI of ICF decreased noticeably at high frequency above 300 kHz because of a large decrease in the capacitance of the cell membrane.

A New Resistance Model for a Schottky Barrier Diode in CMOS Including N-well Thickness Effect

  • Lee, Jaelin;Kim, Suna;Hong, Jong-Phil;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.381-386
    • /
    • 2013
  • A new resistance model for a Schottky Barrier Diode (SBD) in CMOS technology is proposed in this paper. The proposed model includes the n-well thickness as a variable to explain the operational behavior of a planar SBD which is firstly introduced in this paper. The model is verified using the simulation methodology ATLAS. For verification of the analyzed model and the ATLAS simulation results, SBD prototypes are fabricated using a $0.13{\mu}m$ CMOS process. It is demonstrated that the model and simulation results are consistent with measurement results of fabricated SBD.

Al-Si Contact on Annealing condition (열처리 조건에 따른 Al-Si 접촉)

  • Kim, Tae-Hyung;Yu, Seok-Bin;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.261-264
    • /
    • 1990
  • The specific contact resistance(SCR) of metal-semiconductor interface is an important design parameter for VLSI interconnecting technology. As the critical feature size of the integrated structures decrease, the physical size of ohmic contacts will also decrease and the series contact resistance will increase. Al-Si contacts on the annealing condition are studied. The propreties of the contacts depend considerably on the annealing procedures. Barrier height is measured from Capacitance-Voltage characteristics. The specific contact resistance are analyzed using a modified four point method.

  • PDF

Development and Characteristics of DC/AC Resistance Standard (직류/교류 저항표준기 제작 및 그 특성)

  • Kim, Han-Jun;Kang, Jeon-Hong;Yu, Kwang-Min;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.519-520
    • /
    • 2008
  • 교류에서의 전기저항값은 저항 elements 사이에서 나타나는 stray 전기용량과 elements의 길이에서 유도되는 인덕턴스의 영향으로 직류에서의 저항값과 차이를 보이게 된다. 이러한 직류와 교류에서의 저항값 차이가 대단히 작게 나면서 직류에서와 측정하는 교류에서의 저항값의 차이를 계산에 의해서 산출할 수 교류저항 표준기가 개발되었다. 개발된 교류저항표준기는 bi-filar 구조의 1 $k\Omega$로서, 1.6 kHz에서 직류/교류 저항값의 차이는 0.02 ${\mu}{\Omega}/{\Omega}$ 보다 작으며, 시정수는 1 kHz에서 $(8{\pm}2)\times10^{-10}$으로 측정되었다. 개발된 교류저항 표준기는 교류저항 국가표준에 최상급 표준기로 사용이 되어질 것이다.

  • PDF

Electrical Characteristics for the Cu/Zn Chemical Cell using NaCl Electrolytes (NaCl 전해질을 사용한 Cu/Zn 화학전지의 전기적 특성)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1259-1264
    • /
    • 2010
  • This paper was researched about effectiveness of the electrochemical cell which is composed of the sea water and the Cu/Zn electrode. The electric potential difference between copper and zinc finally reached 0.51 volts. Short current decreased with time. It might depend on the electromotive force decreasing. Confirmed the load resistance and electrode affect in electromotive force and electric current. The resistance which shows a maximum output power was 20[$\Omega$], and the maximum output power from this resistance was evaluated as 0.736mW. In order to calculate the energy which creates from electrochemical cell, charging voltage of the capacitor with various capacitance was investigated. It was found that energy harvesting possibility of the cell which is made of a sea water electrolyte and the copper/the zinc.