• Title/Summary/Keyword: Resistance marker

Search Result 351, Processing Time 0.038 seconds

Numerical Analysis on Flow Fields and the Calculation of Wave Making Resistance about Air Supported Ships (수치시뮬레이션에 의한 공기부양선 주위의 유동장해석과 조파저항계산)

  • Na Y. I.;Lee Y.-G.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 1996
  • Numerical computations are carried out to analyze the characteristics of flow fields around Air Supported Ships. The computations are performed in a rectangular grid system based on MAC(Marker And Cell) method. The governing equations are represented in finite difference forms by forward differencing in time and centered differencing in space except for its convection terms. For the certification of this numerical analysis method, the computations of flow fields around a Catamaran, an ACV(Air Cushion Vehicle) modeled with pressure distribution on free surface and two SES(Surface Effect Ship)'s are carried out, The results of the present computations are compared with the previously presented computational and experimental results in the same condition.

  • PDF

Genetic Improvement of Maize by Marker-Assisted Breeding (분자마커를 활용한 옥수수 육종)

  • Kim, Jae Yoon;Moon, Jun-Cheol;Baek, Seong-Bum;Kwon, Young-Up;Song, Kitae;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.109-127
    • /
    • 2014
  • Maize is one of the most important food and feed crops in the world including Southeast Asia. In spite of numberous efforts with conventional breeding, the maize productions remain low and the loss of yields by drought and downy mildew are still severe in Asia. Genetic improvement of maize has been performed with molecular marker and genetic engineering. Because maize is one of the most widely studied crop for its own genome and has tremendous diversity and variant, maize is considered as a forefront crop in development and estimation of molecular markers for agricultural useful trait in genetics and breeding. Using QTL (Quantitative Trait Loci) and MAS (Marker Assisted Breeding), molecular breeders are able to accelerate the development of drought tolerance or downy mildew resistance maize genotype. The present paper overviews QTL/MAS approaches towards improvement of maize production against drought and downy mildew. We also discuss here the trends and importance of molecular marker and mapping population in maize breeding.

Application of genomics into rice breeding

  • Ando, Ikuo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.13-13
    • /
    • 2017
  • By the progress of genome sequencing, infrastructures for marker-assisted breeding (MAB) of rice came to be established. Fine mapping and gene isolation have been conducted using the breeding materials derived from natural variations and artificial mutants. Such genetic analysis by the genome-wide dense markers provided us the knowledge about the many genes controlling important traits. We identified several genes or quantitative trait loci (QTL) for heading date, blast resistance, eating quality, high-temperature stress tolerance, and so on. NILs of each gene controlling heading date contribute to elongate the rice harvest period. Determination of precise gene location of blast resistance gene pi21, allowed us to overcome linkage drag, co-introduction of undesirable eating quality. We could also breed the first practical rice cultivar in Japan with a brown planthopper resistance gene bph11 in the genetic back-ground of an elite cultivar. Discovery of major and minor QTLs for good eating quality allowed us to fine-tune of eating quality according to the rice planting area or usage of rice grain. Many rice cultivars have bred efficiently by MAB for several traits, or by marker-assisted backcross breeding through chromosome segment substitution lines (CSSLs) using genetically diverse accessions. We are also systematically supporting the crop breeding of other sectors by MAB or by providing resources such as CSSLs. It is possible to pyramid many genes for important traits by using MAB, but is still difficult to improve the yielding ability. We are performing a Genomic Selection (GS) for improvement of rice biomass and grain yield. We are also trying to apply the genome editing technology for high yield rice breeding.

  • PDF

Development of Molecular Markers for Xanthomonas axonopodis Resistance in Soybean

  • Kim Ki-Seung;Van Kyujung;Kim Moon Young;Lee Suk-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.429-433
    • /
    • 2004
  • A single recessive gene, rxp, controls the bacterial leaf pustule (BLP) resistance in soybean and in our previous article, it has been mapped on linkage group (LG) D2 of molecular genetic map of soybean. A total of 130 recombinant inbred lines (RILs) from a cross between BLP-resistant SS2-2 and BLP-susceptible Jangyeobkong were used to identify molecular markers linked to rxp. Fifteen simple sequence repeat (SSR) markers on LG D2 were screened to construct a genetic map of rxp locus. Only four SSR markers, Satt135, Satt372, Satt448, and Satt486, showed parental polymorphisms. Using these markers, genetic scaffold map was constructed covering 26.2cM. Based on the single analysis of variance, Satt372 among these four SSR markers was the most significantly associated with the resistance to BLP. To develop new amplified fragment length polymorphism (AFLP) marker linked to the resistance gene, bulked segregant analysis (BSA) was employed. Resistance and susceptible bulks were made by pooling equal amount of genomic DNAs from ten of each in the segregating population. A total of 192 primer combinations were used to identify specific bands to the resistance, selecting three putative AFLP markers. These AFLP markers produced the fragment present in SS2-2 and the resistant bulk, and not in Jangyeobkong and the susceptible bulk. Linkage analysis revealed that McctEact97 $(P=0.0004,\;R^2=14.67\%)$ was more significant than Satt372, previously reported as the most closely linked marker.

Screening of Rice Blast Resistance Genes from Aromatic Rice Germplasms with SNP Markers

  • Kim, Jeong-Soon;Ahn, Sang-Nag;Kim, Chung-Kon;Shim, Chang-Ki
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.70-79
    • /
    • 2010
  • Rice blast is one of the serious devastating diseases. This study was carried out to determine the genetic diversities of blast resistance (R) genes form 86 accessions of aromatic rice with eight SNP markers, z4792, zt4792, z60510, zt6057, k6415, k6411, k39575 and t256, which showed the close-set linkage to 6 major genes, Piz, Piz-t, Pik, Pik-m, Pik-p, and Pit. Four accessions of indica type, Mayataung, Yekywin Yinkya Hmwe, Basmati9-93, and Basmati5854, showed the positive amplicons of six major genes. Among 86 accessions, 83 accessions were detected both or one of Piz and Piz-t genes. Seventy three accessions contained the Piz gene with z4792 marker. In addition, 30 and 71 accessions possessed Piz-t gene with zt4792 and zt6057 markers, respectively. Ten accessions showed the positive bands for the Piz-t gene with both zt4792 and zt6057 markers. Only one accession, Khau Nua Keo, was not amplified for both Piz and Piz-t gene. But japonica type, Gerdeh, possessed only Piz gene between Piz and Piz-t. Fifty two accessions showed the three of Pik multiple genes and Pit gene. Four accessions, Iari7447, Daebunhyangdo2, Shiyayuuine, and Basmati 6129 possessed a Pik-p gene. Especially, Pit gene on chromosome 1 was detected with t256 marker in all of 83 accessions, exception of A-2, one accession of japonica type.

Contact Sensitivity to Dinitrochlorobenzene as a Marker Trait in the Indirect Selection for Body Mange and Coccidiosis Resistance in Broiler Rabbits

  • Nandakumar, P.;Thomas, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.2
    • /
    • pp.165-168
    • /
    • 1999
  • To determine the effects of genetic and environmental influences on cell mediated immune (CMI) responses in broiler rabbits, contact sensitivity to 2,4-Dinitrochlorobenzene (DNCB) was assessed in three temperate broiler breeds of rabbits, namely Soviet Chinchilla, New Zealand White and Grey Giant. The feasibility of using the contact sensitivity to DNCB as a marker trait in selection for disease resistance was examined. There were highly significant differences between breeds (p<0.01) in initial skin thickness and contact sensitivities to DNCB at 24, 48 and 72 hours. Initial skin thickness was greatest in the Soviet Chinchilla breed (mean 2.2484 mm), and was significantly greater (p<0.01) in males (2.4963 mm) than in females (1.7846 mm) (p<0.01). Highest contact sensitivity to DNCB was in the New Zealand White breed with mean increase in skin thickness of 1.1884, 0.9072 and 0.5879 mm at 24, 48 and 72 hours post challenge respectively. Delayed type hypersensitivity (DTH) reaction to DNCB at 24 hours post challenge had a highly significant association (p<0.01) with the incidence of body mange in rabbits. The results indicated a lowered contact sensitivity to DNCB at 24 hours post challenge was associated significantly (p<0.01) with an increase in incidence and severity of body mange, suggesting its potential value as a marker. The correlation s among contact sensitivities at 24, 48 and 72 hours were positive and highly significant (p<0.01); correlations between initial skin thickness and contact sensitivities were negative and highly significant (p<0.01). Another notable significant correlation was between body weight and delayed type hypersensitivity at 24 hours indicating that an enhanced CMI might be associated with better growth rate and general wellbeing.

A Dual Selection Marker Transformation System Using Agrobacterium tumefaciens for the Industrial Aspergillus oryzae 3.042

  • Sun, Yunlong;Niu, Yali;He, Bin;Ma, Long;Li, Ganghua;Tran, Van-Tuan;Zeng, Bin;Hu, Zhihong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.230-234
    • /
    • 2019
  • Currently, the genetic modification of Aspergillus oryzae is mainly dependent on protoplast-mediated transformation (PMT). In this study, we established a dual selection marker system in an industrial A. oryzae 3.042 strain by using Agrobacterium tumefaciens-mediated transformation (ATMT). We first constructed a uridine/uracil auxotrophic A. oryzae 3.042 strain and a pyrithiamine (PT)-resistance binary vector. Then, we established the ATMT system by using uridine/uracil auxotrophy and PT-resistance genes as selection markers. Finally, a dual selection marker ATMT system was developed. This study demonstrates a useful dual selection marker transformation system for genetic manipulations of A. oryzae 3.042.

The Construction of a Chinese Cabbage Marker-assisted Backcrossing System Using High-throughput Genotyping Technology

  • Kim, Jinhee;Kim, Do-Sun;Lee, Eun Su;Ahn, Yul-Kyun;Chae, Won Byoung;Lee, Soo-Seong
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.232-242
    • /
    • 2017
  • The goal of marker-assisted backcrossing (MAB) is to significantly reduce the number of breeding generations required by using genome-based molecular markers to select for a particular trait; however, MAB systems have only been developed for a few vegetable crops to date. Among the types of molecular markers, SNPs (single-nucleotide polymorphisms) are primarily used in the analysis of genetic diversity due to their abundance throughout most genomes. To develop a MAB system in Chinese cabbage, a high-throughput (HT) marker system was used, based on a previously developed set of 468 SNP probes (BraMAB1, Brassica Marker Assisted Backcrossing SNP 1). We selected a broad-spectrum TuMV (Turnip mosaic virus) resistance (trs) Chinese cabbage line (SB22) as a donor plant, constructing a $BC_1F_1$ population by crossing it with the TuMV-susceptible 12mo-682-1 elite line. Foreground selection was performed using the previously developed trsSCAR marker. Background selection was performed using 119 SNP markers that showed clear polymorphism between donor and recipient plants. The background genome recovery rate (% recurrent parent genome recovery; RPG) was good, with three of 75 $BC_1F_1$ plants showing a high RPG rate of over 80%. The background genotyping result and the phenotypic similarity between the recurrent parent and $BC_1F_1$ showed a correlation. The plant with the highest RPG recovery rate was backcrossed to construct the $BC_2F_1$ population. Foreground selection and background selection were performed using 169 $BC_2F_1$ plants. This study shows that, using MAB, we can recover over 90% of the background genome in only two generations, highlighting the MAB system using HT markers as a highly efficient Brassica rapa backcross breeding system. This is the first report of the application of a SNP marker set to the background selection of Chinese cabbage using HT SNP genotyping technology.

Fine mapping of qBK1, a major QTL for bakanae disease resistance in rice

  • Ham, Jeong-Gwan;Cho, Soo-Min;Kim, Tae Heon;Lee, Jong-Hee;Shin, Dongjin;Cho, Jun-Hyun;Lee, Ji-Yoon;Yoon, Young-Nam;Song, You-Chun;Oh, Myeong-Kyu;Park, Dong-Soo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.92-92
    • /
    • 2017
  • Bakanae disease is one of the most serious and oldest problems of rice production, which was first described in 1828 in Japan. This disease has also been identified in Asia, Africa, North America, and Italy. Germinating rice seeds in seed boxes for mechanical transplantation has caused many problems associated with diseases, including bakanae disease. Bakanae disease has become a serious problem in the breeding of hybrid rice, which involves the increased use of raising plants in seed beds. The indica rice variety Shingwang was selected as resistant donor to bakanae disease. One hundred sixty nine NILs, YR28297 ($BC_6F_4$) generated by five backcrosses of Shingwang with the genetic background of susceptible japonica variety, Ilpum were used for QTL analysis. Rice bakanae disease pathogen, CF283, was mainly used in this study and inoculation and evaluation of bakanae disease was performed with the method of the large-scale screening method developed by Kim et al. (2014). SSR markers evenly distributed in the entire rice chromosomes were selected from the Gramene database (http://www.gramene.org), and the polymorphic markers were used for frame mapping of a $BC_5F_5$ resistant line. Here, we developed 168 near-isogenic rice lines (NILs, $BC_6F_4$) to locate a QTL for resistance against bakanae disease. The lines were derived from a cross between Shingwang, a highly resistant variety (indica), and Ilpum, a highly susceptible variety (japonica). The 24 markers representing the Shingwang allele in a bakanae disease-resistant NIL, YR24982-9-1 (parental line of the $BC_6F_4$ NILs), were located on chromosome 1, 2, 7, 8, 10, 11, and 12. Single marker analysis using an SSR marker, RM9, showed that a major QTL was located on chromosome 1. The QTL explained 65 % of the total phenotype variation in $BC_6F_4$ NILs. The major QTL designated qBK1 was mapped in 91 kb region between InDel15 and InDel21. The identification of qBK1 and the closely linked SSR marker, InDel18, could be useful for improving rice bakanae disease resistance in marker-assisted breeding.

  • PDF

Resistance Evaluation of Commmercial Tomato Cultivars against Tomato yellow leaf curl virus (토마토품종의 토마토황화잎말림바이러스병에 대한 저항성 평가)

  • Ko, Sug-Ju;Kim, Hyo-Jeong;Lee, Jin-Hee;Ma, Kyung-Cheol;Choi, Duck-Soo;Park, Young-Hoon;Choi, Seung-Kook;Kim, Mi Kyeong;Choi, Hong-Soo
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.297-302
    • /
    • 2016
  • Tomato yellow leaf curl virus (TYLCV) is a viral disease causing severe economic losses on tomato. Practical prevention of the TYLCV disease is to control tabacco whitefly (Bemisia tabaci) or to cultivate TYLCV-resistant tomato cultivars, because no agrochemical products are available to control TYLCV. In this study, TYLCV resistance of the commercial tomato cultivars were evaluated using the DNA markers tightly linked to TYLCV resistance genes Ty-1 and Ty-3 and infection with the TYLCV clones mediated by Agrobacterium. In marker genotyping, resistance alleles were detected from 4 oval type tomato cultivars (Titichal, TY tinny, TY saengsaeng II, TY sense Q). Four cheery type cultiavrs (TY endorphin, TY smartsama, Tiara TY, Olleh TY) and 6 round type cultivars (TY kingdom, TY ace, TY homerun, TY altorang, Dotaerang TY winner, Styx TY). The seedling bioassay indicated that tomato cultivars of the oval type and cherry type showed consistancy in marker genotype and phenotype while slight disease symptom was observed from some round type cultivras (TY ace, TY homerun, Styx TY) with resistance marker genotype. For fruit yields, TY tinny was greater than its control cultivar Titichal in oval types, TY smartsama was greater than its control Smile in cherry type, and TY ace and TY kingdom were greater than their control Dabok. These cutliavrs can be a good choice for high-yielding TYLCV-resistant tomato cultivars.