• Title/Summary/Keyword: Resistance bias factor

Search Result 37, Processing Time 0.028 seconds

Estimation of LRFD Resistance Bias Factors for Pullout Resistance of Soil-Nailing (쏘일네일링의 인발저항에 대한 LRFD 저항편향계수 산정)

  • Son, Byeong-Doo;Lim, Heui-Dae;Park, Joon-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.5-16
    • /
    • 2015
  • Considering the conversion of the Korea Construction Standards to Limit State Design (LSD), we analyzed the resistance bias factor for pullout resistance, as a part of the development of the Load and Resistance Factor Design (LRFD) for soil nailing; very few studies have been conducted on soil nailing. In order to reflect the local characteristics of soil nailing, such as the design and construction level, we collected statistics on pullout tests conducted on slopes and excavation construction sites around the country. In this study a database was built based on the geotechnical properties, soil nailing specifications, and pullout test results. The resistance bias factors are calculated to determine the resistance factor of the pullout resistance for gravity and pressurized grouting method, which are the most commonly used methods in Korea; moreover, we have relatively sufficient data on these methods. We found the resistance bias factors to be 1.144 and 1.325, which are relatively conservative values for predicting the actual ultimate pullout resistance. It showed that our designs are safer than those found in a research case in the United States (NCHRP Report); however, there was an uncertainty, $COV_R$, of 0.27-0.43 in the pullout resistance, which is relatively high. In addition, the pressurized grouting method has a greater margin of safety than the gravity grouting method, and the actual ultimate pullout resistance determined using the pressurized grouting method has low uncertainty.

Analysis of LRFD Resistance Factor for Shallow Foundation on Weathered Soil Ground (풍화토지반 얕은기초에 대한 LRFD 저항계수 분석)

  • Kim, Donggun;Kim, Huntae;Suh, Jeeweon;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.5-11
    • /
    • 2015
  • Recently the necessity of developing the Load and Resistance Factor Design (LRFD) for shallow foundation has been raised to implement to the domestic design codes related to geotechnical engineering since the limit state design is requested as international technical standard for the foundation of structures. In this study, applicability of LRFD for shallow foundation on weathered soils was investigated and resistance factor for this case was proposed. The quantitative analyses on the uncertainty and resistance bias for shallow foundation on weathered soil ground were performed by collecting the statistical data about domestic case studies for design and construction of shallow foundation. Reliability analyses for shallow foundation were first performed using FDA (First-order Design value Approach) method. Resistance factors were calibrated using the load factors obtained from the specifications of shallow foundations on weathered soil ground. The influence of the load factors developed in this study on the resistance factors were discussed by comparing with the resistance factor obtained from using AASHTO load factors.

Evaluation of the Resistance Bias Factors to Develop LRFD for Gravel Compaction Piles (LRFD 설계를 위한 쇄석다짐말뚝공법의 저항편향계수 산정)

  • Han, Yong-Bae;Park, Joon-Mo;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.43-55
    • /
    • 2012
  • In this study, the resistance bias factors are calculated to determine the resistance factor of Gravel Compaction Piles which is one of the soft ground improvement methods. In order to calculate resistance bias factors for gravel compaction piles, two ultimate bearing capacities were analyzed. One is the ultimate bearing capacity in 2.54 cm settlement measured using data of the field loading test on 41 piles and the other is the ultimate bearing capacity calculated using the seven equations concerning bulging failure. The results of analysis show that the probability density function of the calculated ultimate bearing capacities has a lognormal distribution. Resistance bias factor and the coefficient of variation for Greenwood equation are 0.91 and 0.38, respectively, and for those of Hughes & Withers are 1.19 and 0.39. The two equations are suitable for calculating resistance factors for LRFD of soil improvement using gravel compaction piles.

Constructing Database and Probabilistic Analysis for Ultimate Bearing Capacity of Aggregate Pier (쇄석다짐말뚝의 극한지지력 데이터베이스 구축 및 통계학적 분석)

  • Park, Joon-Mo;Kim, Bum-Joo;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.8
    • /
    • pp.25-37
    • /
    • 2014
  • In load and resistance factor design (LRFD) method, resistance factors are typically calibrated using resistance bias factors obtained from either only the data within ${\pm}2{\sigma}$ or the data except the tail values of an assumed probability distribution to increase the reliability of the database. However, the data selection approach has a shortcoming that any low-quality data inadvertently included in the database may not be removed. In this study, a data quality evaluation method, developed based on the quality of static load test results, the engineering characteristics of in-situ soil, and the dimension of aggregate piers, is proposed for use in constructing database. For the evaluation of the method, a total 65 static load test results collected from various literatures, including static load test reports, were analyzed. Depending on the quality of the database, the comparison between bias factors, coefficients of variation, and resistance factors showed that uncertainty in estimating bias factors can be reduced by using the proposed data quality evaluation method when constructing database.

Evaluation of the Resistance Bias Factors to Develop LRFD for Driven Steel Pipe Piles (LRFD 설계를 위한 항타강관말뚝의 저항편향계수 산정)

  • Kwak, Kiseok;Park, Jaehyun;Choi, Yongkyu;Huh, Jungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.343-350
    • /
    • 2006
  • The resistance bias factors for driven steel pipe piles are evaluated as a part of study to develop the LRFD(Load and Resistance Factor Design) for foundation structures in Korea. The 43 data sets of static load tests and soil property tests performed in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles using various methods. Based on the statistical analysis of the data, the Davisson's criterion is proved to be the most reasonable method for estimation of pile bearing capacity among the methods used. The static bearing capacity formulas and the Meyerhof method using N values are applied to calculate the design bearing capacity of the piles. The resistance bias factors of the driven steel pipe piles are evaluated respectively as 0.98 and 1.46 by comparison of the bearing capacities for both of the static bearing capacity formulas and the Meyerhof method. It is also shown that uncertainty of the static bearing capacity formulas is relatively less than that of the Meyerhof method.

Flexural Resistance Statistics of Composite Plate Girders (국내 생산 강재를 적용한 강합성 거더 휨저항강도의 통계적 특성)

  • Shin, Dong Ku;Kim, Chun Yong;Rho, Joon Sik;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.139-146
    • /
    • 2007
  • The objective of the present study is to provide statistical resistance statistics for steel-concrete composite plate girder sections under positive and negative moments. Statistical properties on yield strength, tensile strength, elongation, and fracture toughness of domestic structural steel products, gathered from an analysis of over 16,000 samples, were evaluated. Using the steel samples for the plate girder, the bias factor and the coefficient of variation of the ultimate flexural resistance for representative composite plate girder sections under positive and negative flexures were presented. In calculating the ultimate flexural resistance of the composite section, the moment curvature relationships were developed using the incremental load approach considering material nonlinearity for the steel girder. The predicted statistics can be used in the future for the efficient calibration of LRFD code.

Estimation of Resistance Bias Factors for the Ultimate Limit State of Aggregate Pier Reinforced Soil (쇄석다짐말뚝으로 개량된 지반의 극한한계상태에 대한 저항편향계수 산정)

  • Bong, Tae-Ho;Kim, Byoung-Il;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.17-26
    • /
    • 2019
  • In this study, the statistical characteristics of the resistance bias factors were analyzed using a high-quality field load test database, and the total resistance bias factors were estimated considering the soil uncertainty and construction errors for the application of the limit state design of aggregate pier foundation. The MLR model by Bong and Kim (2017), which has a higher prediction performance than the previous models was used for estimating the resistance bias factors, and its suitability was evaluated. The chi-square goodness of fit test was performed to estimate the probability distribution of the resistance bias factors, and the normal distribution was found to be most suitable. The total variability in the nominal resistance was estimated including the uncertainty of undrained shear strength and construction errors that can occur during the aggregate pier construction. Finally, the probability distribution of the total resistance bias factors is shown to follow a log-normal distribution. The parameters of the probability distribution according to the coefficient of variation of total resistance bias factors were estimated by Monte Carlo simulation, and their regression equations were proposed for simple application.

Electron Tunneling Characteristics of PtSi-nSi Junctions according to Temperature Variations (온도변화에 따른 백금 실리사이드-엔 실리콘 접합의 전자 터널링 특성)

  • 장창덕;이정석;이광우;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.87-91
    • /
    • 1998
  • In this paper, We analyzed the current-voltage characteristics with n-type silicon substrates concentration and temperature variations (Room temperature, 50$^{\circ}C$, 75$^{\circ}C$) in platinum silicide and silicon junction. The electrical parameters of measurement are turn-on voltage, saturation current, ideality factor, barrier height, dynamic resistance in forward bias and reverse breakdown voltage according to variations of junction concentration of substrates and measurement temperature variations. As a result, the forward turn-on voltage, reverse breakdown voltage, barrier height and dynamic resistance were decreased but saturation currents and ideality factor were increased by substrates increased concentration variations in platinum silicide and n-silicon junction. In increased measurement temperature (RT, 50$^{\circ}C$, 75$^{\circ}C$), the extracted electrical parameter values of characteristics were rises by increased temperature variations according to the forward and reverse bias.

  • PDF

Resistance Factor and Target Reliability Index Calculation of Static Design Methods for Driven Steel Pipe Pile in Gwangyang (광양지역에 적합한 항타강관말뚝의 목표신뢰성지수 및 저항계수 산정)

  • Kim, Hyeon-Tae;Kim, Daehyeon;Lim, Jae-Choon;Park, Kyung-Ho;Lee, Ik-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8128-8139
    • /
    • 2015
  • Recently, the necessity of developing the load and resistance factor design(LRFD) for soft ground improvement method has been raised, since the limit state design is requested as international technical standard for the foundation of structures. In this study, to develop LRFD codes for foundation structures in Korea, target reliability index and resistance factor for static bearing capacity of driven steel pipe piles were calibrated in the framework of reliability theory. The 16 data(in Gwangyang) and the 57 data(Korea Institute of Construction Technology, 2008) sets of static load test and soil property tests conducted in the whole domestic area were collected along with available subsurface investigation results. The resistance bias factors were evaluated for the tow static design methods by comparing the representative measured bearing capacities with the expected design values. Reliability analysis was performed by two types of advanced methods : the First Order Reliability Method (FORM), and the Monte Carlo Simulation (MCS) method using resistance bias factor statistics. As a result, when target reliability indices of the driven pipe pile were selected as 2.0, 2.33, 2.5, resistance factor of two design methods for SPT N at pile tip less than 50 were evaluated as 0.611~0.684, 0.537~0.821 respectively, and STP N at pile tip more than 50 were evaluated as 0.545~0.608, 0.643~0.749 respectively. The result from this research will be useful for developing various foundations and soil structures under LRFD.

FORM Reliability-based Resistance Factors for Driven Steel Pipe Piles (FORM 신뢰성 기반 항타강관말뚝 저항계수 산정)

  • Park, Jae-Hyun;Huh, Jung-Won;Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.779-783
    • /
    • 2008
  • LRFD Resistance factors for static bearing capacity of driven steel pipe piles were calibrated in the freamework of reliability theory. Reliability analysis was performed by the First Order Reliability Method (FORM) using resistance bias factor statistics.The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, based on the reliability level of the current design practice and considering redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure.

  • PDF