DOI QR코드

DOI QR Code

Constructing Database and Probabilistic Analysis for Ultimate Bearing Capacity of Aggregate Pier

쇄석다짐말뚝의 극한지지력 데이터베이스 구축 및 통계학적 분석

  • Park, Joon-Mo (Dept. of Civil and Environmental Engineering, Dongguk Univ.) ;
  • Kim, Bum-Joo (Dept. of Civil and Environmental Engineering, Dongguk Univ.) ;
  • Jang, Yeon-Soo (Dept. of Civil and Environmental Engineering, Dongguk Univ.)
  • 박준모 (동국대학교 공과대학 건설환경공학과) ;
  • 김범주 (동국대학교 공과대학 건설환경공학과) ;
  • 장연수 (동국대학교 공과대학 건설환경공학과)
  • Received : 2014.06.12
  • Accepted : 2014.08.13
  • Published : 2014.08.31

Abstract

In load and resistance factor design (LRFD) method, resistance factors are typically calibrated using resistance bias factors obtained from either only the data within ${\pm}2{\sigma}$ or the data except the tail values of an assumed probability distribution to increase the reliability of the database. However, the data selection approach has a shortcoming that any low-quality data inadvertently included in the database may not be removed. In this study, a data quality evaluation method, developed based on the quality of static load test results, the engineering characteristics of in-situ soil, and the dimension of aggregate piers, is proposed for use in constructing database. For the evaluation of the method, a total 65 static load test results collected from various literatures, including static load test reports, were analyzed. Depending on the quality of the database, the comparison between bias factors, coefficients of variation, and resistance factors showed that uncertainty in estimating bias factors can be reduced by using the proposed data quality evaluation method when constructing database.

국내 외 하중저항계수설계법의 저항계수 보정 시 수집된 데이터베이스의 신뢰성을 향상시키기 위하여 저항편향계수 산정 단계에서 저항편향치의 ${\pm}2{\sigma}$ 범위의 데이터만을 선택하거나 가정된 확률분포 검정을 만족하도록 꼬리(tail)부분의 데이터를 제거하는 방법을 적용하고 있다. 그러나 이들 방법에서는 데이터베이스 내에 우연히 포함된 저품질의 데이터를 확인할 수 없는 단점이 발견되었다. 본 연구에서는 정재하시험의 품질, 원지반의 공학적 특성, 쇄석다짐말뚝의 제원 등의 품질기준을 이용하여 데이터베이스 구축 단계에서 수행할 수 있는 품질평가법을 제안하였으며, 국내 외 문헌 및 정재하시험 보고서로부터 65개소의 정재하시험 데이터를 수집하여 데이터베이스의 구축 및 품질평가를 수행하였다. 데이터베이스의 품질 평가 상태에 따른 저항편향계수와 변동계수, 저항계수를 비교한 결과, 기존의 데이터베이스 처리과정과 품질평가법을 병행할 경우에 저항편향계수의 불확실성이 감소되며, 신뢰도 높은 LRFD 저항계수 보정에 효과적인 것으로 판단된다.

Keywords

References

  1. AASHTO (2010), AASHTO LRFD bridge design specifications, Fifth Edition, American Association of State Highway and Transportation Officials, Washington, D.C, pp.10-39-10-51.
  2. Allen, T. M., Christopher, B. R., Elias, V., and DiMaggio, J. (2001), Development of the simplified method for internal stability of mechanically stabilized earth(MSE) walls, Report WA-RD 513, Washington State Department of Transportation, pp.108.
  3. Allen, T. M., Nowak, A. S., and Bathurst, R. J. (2005), Calibration to determine load and resistance Factors for Geotechnical and Structural Design, Circular Number E-C079, Transportation Research Board, Washington, D.C., pp.13-14.
  4. Barker, R. M., Duncan, J. M., Rojiani, K. B., Ooi, P. S. K., Tan, C. K., and Kim, S. G. (1991), NCHRP Report 343: Manuals for the design of bridge foundations, Transportation Research Board, National Research Council, Washington, DC., p.A-27.
  5. Barksdale, R. D. and Bachus, R. C. (1983), Design and construction of stone columns, Vol. 1, Report No. FHWA/RD 83/026, Federal Highway Administration, pp.27-35.
  6. Black, J. A., Sivakumar, V., Madhav, M. R., and Hamill, G. A. (2007), "Reinforced stone column in weak deposits: laboratory model test", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.133, No.9, pp.1154-1161. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1154)
  7. Brauns, J. (1978), "Die anfangstraglast von schottersauen im bingigen untergrund", Die bautechink, Vol.8, pp.263-271.
  8. Chen, Y. (2000a), "Practical analysis and design methods of mechanically stabilized earth walls I: design philosophies and procedures", Engineering Structures, Vol.22, No.7, pp.793-808. https://doi.org/10.1016/S0141-0296(99)00021-8
  9. Chen, Y. (2000b), "Practical analysis and design methods of mechanically stabilized earth walls II: design comparisons and Impact of LRFD method", Engineering Structures, Vol.22, No.7, pp.809-830. https://doi.org/10.1016/S0141-0296(99)00022-X
  10. D'Appolonia. (1999), Developing new AASHTO LRFD specification for retaining walls, Final Report, NCHRP Project 20-7, Task 88, Ground Technology, Inc., Monroeville, PA. pp.50.
  11. Greenwood, D. A. (1970), "Mechanical improvement of soils below ground surface", Proceedings Conference on Ground Engineering, Institution of Civil Engineers, London, UK, pp.11-22.
  12. Gibson, R. E. and Anderson, W. F. (1961), "lnsitu Measurement of Soil Properties with the Pressuremeter", Civil Engineering, London, Vol.56, pp.615-620.
  13. Han, J. and Ye, S. (1991), "Field tests of soft clay stabilized by stone columns in coastal areas of China", Proceedings 4th International Deep Foundations Institute Conference, Vol.1, Balkema Press, Rotterdam, The Netherlands, pp.243-248.
  14. Hansbo, S. (1994), Foundation engineering, Developments in Geotechnical Engineering, Elsevier Press, 95, pp.450-455.
  15. Huang, B. Q. (2010), Numerical study and load resistance factor design (LRFD) Calibration for reinforced soil retaining walls, Ph. D. Thesis, Queen's University, Canada, p.174.
  16. Hughes, J. M. O. and Withers, N. J. (1974), "Reinforcing of soft cohesive soils with stone columns", Ground Engineering, Vol.7, No.3, pp.42-49.
  17. Jang, Y. S. and Park, J. M. (2013), "Application of LRFD method factor for aggregate piers", 2013 Spring Geosynthetics Conference, Daegu, pp.1-7.
  18. Juran, I. and Guermazi, A. (1988), "Settlement response of soft soils reinforced by compacted sand columns", Journal of Geotechnical Engineering, ASCE, Vol.114, No.8, pp.930-943. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:8(930)
  19. KICT (2008), Determination of resistance factors for foundation structure design by LRFD, Ministry of Land, Transportation and Maritime Affairs, Korea, p.65.
  20. Kim, H. T., Koh, Y. I., Kang, I. K., and Kim, J. H. (1997), "Estimation of ultimate bearing capacity for bulging failure of granular group piles", KGS fall 1997 National Conference, Seoul, Korea, pp.73-80.
  21. Lawton, E. C. and Warner, B. J. (2004), Performance of a group of GeoPier elements loaded in compression compared to single geopier elements and unreinforced soil, Report No. UUCVEEN 04-12, University of Utah, Salt Lake City, UT., p.257.
  22. Lazarte, C. A. (2011), NCHRP Report 701: Proposed specifications for LRFD soil-nailing design and construction, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC., p.54.
  23. Madhav, M. R., Iyengar, N. G. R., Vitkar, R. P., and Nandia, A. (1979), "SIncreased bearing capacity and reduced settlements due to inclusions in soil", Proceedings of the International Conference on Soil Reinforcement: Reinforced Earth and Other Techniques, Paris, Vol.II, pp.329-333.
  24. Maurya, R. R., Sharma, B. V. R., and Naresh, D. N. (2005), "Footing Load Tests on Single and Group of Stone Columns", Proceedings Sixteenth International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan. pp.1385-1388.
  25. McKelvey, D., Sivakumar, V., Bell, A., and Graham, J. (2004), "Modeling vibrated stone columns in soft clay, Proceedings of the Institute of Civil Engineers Geotechnical Engineering, Vol.157, Issue GE3, pp.137-149.
  26. Paikowsky, S., Birgission, G., McVay, M., Nguyen, T., Kuo, C., Baecher, G., Ayyub, B., Stenerson, K., O'Mally, K., Chernauskas, L., and O'Neill, M. (2004), NCHRP Report 507: Load and resistance factor design (LRFD) for deep foundations, National Cooperative Highway Research Program, Tansportation Research Board, Washington, DC., p.16.
  27. Paikowsky, S. G., Canniff, M. C., Lesny, K., Kisse, A., Amatya, S., and Muganga, R. (2010), NCHRP Report 651: LRFD design and construction of shallow foundations for highway bridge structures, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC., pp.61-66.
  28. Pitt, J. M., White, D. J., Gaul, A., and Hoevelcamp, K. (2003), Highway applications for rammed aggregate piers in Iowa soils, Final Report, Iowa DOT Project TR-443, CTRE Project pp.1-60.
  29. Smith, T. D., Banas, A., Gummer, M., and Jin, J. (2011), Recalibration of the GRLWEAP LRFD resistance factor for Oregon DOT, FHWAOR-RD-11-08, Oregon Department of Transportation Research Section, pp.49-50.
  30. Stuedlein, A. W. (2008), Bearing capacity and displacement of spread footings on aggregate pier reinforced clay, Ph.D. Dissertation, University of Washington, pp.213-302.
  31. Vesic, A. S. (1972), "Expansion of cavities in infinite soil mass", Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 98, No.3, pp.265-290.