• Title/Summary/Keyword: Resistance Method

Search Result 6,883, Processing Time 0.035 seconds

A Study on the Resistance Property of Hard Chine Type High Speed Planing Craft (HARD CHINE형 활주 고속선의 저항특성에 관한 고찰)

  • 이창억
    • Journal of the Korean Professional Engineers Association
    • /
    • v.16 no.2
    • /
    • pp.1-11
    • /
    • 1983
  • The resistance property of a high speed passenger craft (: "DOL-PIN HO" designed by the author in 1972) is investigated as follows; -. The Resistance property of the craft is determined by savitsky′s method and blount-Fox′s method. The theoretical results are also compared with the full scale data. The comparison reveals that the result when using blount/fox′s method are in much closer agreement with the full scale data than savitsky′s. -. The effects of ship speed on the positions of the center of pressure and of the longitudinal center of gravity (L.C.G.) are investigated. The investigation shows that the position of L.C.G. of the craft is almost constant although the ship speed is changed. -. The effect of transom flap on the Resistance property of the craft is studied using savitsky/brown′s method. From the study it is found that the resistance of the craft is decreased and hence speed gain (about 3% of the service speed) can be obtained, when using transom flap for the craft.

  • PDF

Consideration of Geosynthetics Chemical Resistance Test for Long-Term Performance Evaluation (장기성능 평가를 위한 토목섬유 화학저항성 시험 고찰)

  • Jeon, Han-Yong;Jang, Yeon-Soo;Gong, Hak-Bong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.222-232
    • /
    • 2009
  • In this study, the real site test conditions were considered and applied to suggest the improved test method for geosynthetics chemical resistance. For this, index and performance tests were done to specify and regulate the more approached test method. Accelerated model by Arrhenius equation was applied to interpretate the experimental data. Through analysis and comparison the overall experimental results, we could suggest the possibility and setup the advanced chemical resistance test method for geosynthetics.

  • PDF

Development of Hand-Held Type Sheet Resistance Meter Based on a Dual-Configuration Four-Point Probe Method (Dual-Configuration Four-Point Probe Method에 의한 휴대형 면저항 측정기 개발)

  • Kang, Jeon-Hong;Yu, Kwang-Min;Kim, Wan-Seop
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.423-427
    • /
    • 2010
  • Portable sheet resistance-measuring instrument using the dual-configuration Four-Point Probe method is developed for the purpose of precisely measuring the sheet resistance of conducting thin films. While single-configuration Four-Point Probe method has disadvantages of applying sample size, shape and thickness corrections for a probe spacing, the developed instrument has advantages of no such corrections, little edge effects and measuring simply and accurately the sheet resistance between $0.2\Omega/sq$ and $2k\Omega/sq$.

A Study on Improvement of the low temperature flex resistance test method about high waterproof materials (고기능성 투습방수 소재의 저온굴곡 시험방법 개선 연구)

  • Lee, Minhee;Moon, Sunjeong;Ko, Hyeji;Hong, Seongdon
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.425-440
    • /
    • 2018
  • Purpose: This study is aimed at developing of the flex resistance testing process at low temperature with the waterproof fabric to suit the military environment, and is designed to fit for the purpose of the waterproof materials in order to optimize the test method by finding out matters to improve from existing the test method and through previous studies. Methods: The test method, which has been applied to flex resistance of existing water-repellent materials, was improved and consequently, differentiated test results could be obtained according to the test temperature, sample size, and flexing method. Results: The testing of the total of 8 samples revealed that performance of the military requirement could hardly be met just by presenting the materials or 2~3 layers when the quality criteria for high functional water repellent fabrics were applied. PTFE(Polytetrafluoroethylene) is preferred to PU(Polyurethane) to be used in the extremely low-temperature environment, but durability under the low-temperature environment may be varied depending on film thickness or laminating technique even if the materials of waterproof films are identical. Therefore, in addition to the material or texture, the test method capable of reflecting durability under the low-temperature environment shall be suggested, and the newly designed test method proposed in this study was shown to suggest differentiated quality criteria by the material. Conclusion: The water resistance measurement and the test method following flex resistance with expanded range of flex will enable the differentiable test of the samples according to the number of repetition. This study is meaningful in that it suggests a differentiable test method capable of establishing a basis of deciding suitable material when selecting military goods made of water repellent material by properly improving the test method.

Analysis of Added Resistance in Short Waves (단파장 영역에서의 부가저항 해석)

  • Yang, Kyung-Kyu;Seo, Min-Guk;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.338-348
    • /
    • 2015
  • In this study, the added resistance of ships in short waves is systematically studied by using two different numerical methods - Rankine panel method and Cartesian grid method – and existing asymptotic and empirical formulae. Analysis of added resistance in short waves has been preconceived as a shortcoming of numerical computation. This study aims to observe such preconception by comparing the computational results, particularly based on two representative three-dimensional methods, and with the existing formulae and experimental data. In the Rankine panel method, a near-field method based on direct pressure integration is adopted. In the Cartesian grid method, the wave-body interaction problem is considered as a multiphase problem, and volume fraction functions are defined in order to identify each phase in a Cartesian grid. The computational results of added resistance in short waves using the two methods are systematically compared with experimental data for several ship models, including S175 containership, KVLCC2 and Series 60 hulls (CB = 0.7, 0.8). The present study includes the comparison with the established asymptotic and empirical formulae in short waves.

Estimation of the Fracture Resistance Curve for the Nuclear Piping Using the Standard Compact Tension Specimen (표준 CT시험편을 이용한 실배관 파괴저항 곡선 예측)

  • Park, Hong-Sun;Heo, Yong;Koo, Jae-Mean;Seok, Chang-Sung;Park, Jae-Sil;Cho, Sung-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.930-937
    • /
    • 2009
  • The estimation method of the fracture resistance curve for the pipe specimen was proposed using the load ratio method for the standard specimen. For this, the calculation method of the load - CMOD curve for the pipe specimen with the common format equation(CFE) was proposed by using data of the CT specimen. The proposed method agreed well with experimental data. The J-integral value and the crack extension were calculated from the estimated load - CMOD data. The fracture resistance curve was estimated from the calculated J-integral and the crack extension. From these results, it have been seen that the proposed method is reliable to estimate the J-R curve of the pipe specimen.

Analysis of Effective Gate resistance characteristics in Nano-scale MOSFET for RFIC (RFIC를 위한 Nano-scale MOSFET의 Effective gate resistance 특성 분석)

  • 윤형선;임수;안정호;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.1-6
    • /
    • 2004
  • Effective gate resistance, extracted by direct extraction method, is analyzed among various gate length, in nanoscale MOSFET for RFIC. Extracted effective gate resistance is compared to measured data and verified with simplified model. Extracted parameters are accurate to 10GHz. In the same process technology effect has a different kind of gate voltage dependency and frequency dependency compared with general effective gate resistance. Particularly, the characteristic of effective gate resistance before and after threshold voltage is noticeable. When gate voltage is about threshold voltage, effective gate resistance is abnormally high. This characteristic will be an important reference for RF MOSFET modeling using direct extraction method.

Development of an Optimal Hull Form with Minimum Resistance in Still Water

  • Choi Hee-Jong;Kim Mun-Chan;Chun Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.3
    • /
    • pp.1-13
    • /
    • 2005
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) to search for optimized hull form and CFD(Computational Fluid Dynamics) technique. The friction resistance is estimated using the ITTC 1957 model-ship correlation line formula and the wave making resistance is evaluated using a potential-flow panel method based on Rankine sources with nonlinear free surface boundary conditions. The geometry of hull surface is represented and modified using B-spline surface patches during the optimization process. Using the Series 60 hull ($C_B$ =0.60) as a base hull, the optimization procedure is applied to obtain an optimal hull that produces the minimum total resistance for the given constraints. To verify the validity of the result, the original model and the optimized model obtained by the optimization process have been built and tested in a towing tank. It is shown that the optimal hull obtained around $13\%$ reduction in the total resistance and around $40\%$ reduction in the residual resistance at a speed tested compared with that of the original one, demonstrating that the present optimization tool can be effectively used for efficient hull form designs.

A Quantitative Evaluation on Steel Corrosion by Polarization Resistance Method (분극저항법에 의한 철근부식의 정량적 평가)

  • 정우용;손영무;윤영수;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.688-693
    • /
    • 2000
  • Recently great efforts and investment have been made in order to evaluate concrete durability by steel corrosion. But most of study is relatively or qualitatively estimated, therefore it has a great limitation in evaluating a remaining service life of concrete. In this research, steel corrosion rate was measured quantitatively by polarization resistance method and multi-regressed considering chloride, carbonation, coverage depth, relative humidity, W/C, and the use of deicing salts. And a half cell potential method was used at th same time for the purpose of comparing with polarization resistance method.

  • PDF

A Preliminary Study on the Fire Safety Testing Method for Fire-resistance Paints Using an X-ray Analysis Method (X-선 분석법을 이용한 내화도료의 화재안전성 평가 방법에 관한 기초연구)

  • Shim, Ji-Hun;Cho, Nam-Wook;Kim, Kang-Woo
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.58-63
    • /
    • 2014
  • Fire-resistance paints are supposed to become intumescent and diminish heat transfer along the steel frames in case of a fire. If unsatisfactory fire-resistance paints which do not satisfy their standard specification are used, it may result in a severe disaster. Because satisfactory fire-resistance paints are hardly discriminated from the unsatisfactory ones by a simple visual inspection, more reliable and convenient onsite evaluation methods are necessary. Here we report the preliminary study result on the fire safety testing method for fire-resistance paints using an X-ray analysis method. It was found that the existence and quantity of effective constituents in fire-resistance paints can be detected by the X-ray analysis method. X-ray fluorescence (XRF) analyses showed that P and Cl elements are much more enriched in fire-resistance paints, compared to normal paints. X-ray diffraction (XRD) analyses showed that ammonium polyphosphate is present as the main crystalline material in fire-resistance paints, but absent in normal paints. The X-ray analysis method is expected to be used for the onsite inspection of fire-resistance paints with the upcoming availability of portable XRF and XRD instruments.