• Title/Summary/Keyword: Resistance Change Ratio

Search Result 283, Processing Time 0.031 seconds

A Study on Property Change with Mixing Ratio in NBR/PVC Composites

  • Li, Xiang Xu;Jeong, Hyung Seok;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.48-51
    • /
    • 2018
  • 10, 20, 30, and 40% of polyvinyl chloride (PVC) were added to nitrile butadiene rubber (NBR) to modify the latter. The NBR/PVC composites containing pure NBR were synthesized to investigate properties, such as crosslinking density, hardness, tensile strength, abrasion resistance, heat resistance, solvent resistance, and filler dispersion. The experimental result revealed a decrease in crosslinking density and heat resistance with increase in the PVC content. In contrast, addition of PVC to NBR resulted in enhancement of hardness, tensile strength, solvent resistance, and filler dispersion.

An Experimental Study on the Seawater Resistance of Steel Fiber Reinforced concrete Using Fly Ash (플라이애쉬를 혼입한 강섬유보강콘크리트의 내해수성에 관한 실험적 연구)

  • 박승범;오광진
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.189-197
    • /
    • 1997
  • This paper describes an experimental study on the seawater resistance of steel fiber reinforced concrete. The test methods adopted for this study are divided into long-term immersion test and acceleration test by wetting and drying. Tests were carried out to evaluate the procedures which were measured for nine months about reduction in dynamic modulus, length change and compressive strength. Resistance indicators are the water-cement ratio, the content of steel fiber, the content of fly ash, the immersion water(artificial seawater or freshwater) and the types of curing. The seawater resistance of the appropriate additions of steel fiber and fly ash have apparently increased.

Wear Characteristics of Diamond Wheel according to bond in Ceramic Grinding (세라믹 연삭에서 결합제에 따른 다이아몬드 휠의 마멸 특성)

  • 공재향;유봉환;소의열;이근상;유은이;임홍섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.75-81
    • /
    • 2002
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel during grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous finding of ceramics, cutting edge ratio of resinoid bond wheel decreased. For the case of vitrified bond wheel, cutting edge ratio did not change.

FRACTURE STRENGTH OF IMPROVED DENTAL STONE ACCORDING TO WATER/POWDER RATIO (혼수비에 따른 초경석고의 파절강도)

  • Eoum Jung-Hee;Park Charn-Woon;Park Kwang-Sun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.2
    • /
    • pp.220-229
    • /
    • 2001
  • This study was performed to evaluate the fracture resistance of three improved die stone materials according to water/powder ratio. There are lots of handling conditions which affect the physical properties of improved dental stone, and it's well known that the water/powder ratio significantly affect the strength of die stone. If water/power ratio was incorrect, following disadvantages were showed : (1) susceptibility to dimensional change due to abrasion, (2) limited reproduction of fine detail, (3) lack of strength. The maxillary master casts were made of additional silicone impressions(Exaflex, GC America. Inc. USA). Three type IV die stones such as Fuji Rock (GC Europe Intreleuvenlaan, Leuven, Belgium), Velmix(Kerr, Manufacturing company, USA), and Crytal Rock( Maruishi Gypsum Co. Ltd, Japan) were tested. A total of 160 casts were prepared, separated, and tested on the Instron Testing Machine(Model 4201, Co. USA). The obtained results of this study were as follows : 1. Fuji Reck and Velmix less 3ml than the water/power ratio of manufacturer's instruction showed the highest resistance to fracture. According to increasing water/powder ratio, fracture resistance was significantly increased(P<0.05). Crystal Rock showed the highest fracture value when it was mixed with the water/power ratio of manufacturer's instruction. 2. Water/powder ratio of the manufacturer's instructions and less 3ml than that showed lower fracture value of hand mix than that of vacuum mix. Water/powder ratio of more 3ml, 6ml than manufacturer's instructions was not significantly different between hand mix and vacuum mix(p>0.05). 3. Velmix had the highest viscoelastic value among three die materials when it was mixed with the manufacturer's instruction. Viscoelasticity was decreased according to increasing water/powder ratio.

  • PDF

The Characteristics of Chalcogenide $Ge_1Se_1Te_2$ Thin Film for Nonvolatile Phase Change Memory Device (비휘발성 상변화메모리소자에 응용을 위한 칼코게나이드 $Ge_1Se_1Te_2$ 박막의 특성)

  • Lee, Jae-Min;Chung, Hong-Bay
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.6
    • /
    • pp.297-301
    • /
    • 2006
  • In the present work, we investigate the characteristics of new composition material, chalcogenide $Ge_1Se_1Te_2$ material in order to overcome the problems of conventional PRAM devices. The Tc of $Ge_1Se_1Te_2$ bulk was measured $231.503^{\circ}C$ with DSC analysis. For static DC test mode, at low voltage, two different resistances are observed. depending on the crystalline state of the phase-change resistor. In the first sweep, the as-deposited amorphous $Ge_1Se_1Te_2$ showed very high resistance. However when it reached the threshold voltage(about 11.8 V), the electrical resistance of device was drastically reduced through the formation of an electrically conducting path. The phase transition between the low conductive amorphous state and the high conductive crystal]me state was caused by the set and reset pulses respectively which fed through electrical signal. Set pulse has 4.3 V. 200 ns. then sample resistance is $80\sim100{\Omega}$. Reset pulse has 8.6 V 80 ns, then the sample resistance is $50{\sim}100K{\Omega}$. For such high resistance ratio of $R_{reset}/R_{set}$, we can expect high sensing margin reading the recorded data. We have confirmed that phase change properties of $Ge_1Se_1Te_2$ materials are closely related with the structure through the experiment of self-heating layers.

Acid Resistance Properties of RSLMC for Maintenance and Repair (유지 보수를 위한 RSLMC의 산성 저항성)

  • Hong, Chang-Woo;Kim, Dong-Ho;Lee, Hun-Jae;Kwon, Hyouk-Chan;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.161-168
    • /
    • 2002
  • Latex modified concrete is governed by both cement hydration and polymer film formation processes in its binder phase. Such the reactions are expected to improve the polymer-cement co-matrixes themselves and the bond between the cement hydrates and aggregates, and to improve the properties of hardened latex-modified concrete. The purpose of this study was to study the strength and chemical resistance of Rapid-setting latex modified concrete(RSLMC) with the main experimental variables such as latex content(0, 5, 10, 15, 20%) and water-cement ratio(36, 38, 40%) at latex content 15%. Water absorption test was earned out to estimate water permeability resistance. Chemical resistance test was carried out to measure the weight change and to observe the appearance of RSLMC immersion in hydrochloric acid, sulfuric acid, and calcium choloride.

  • PDF

A Study on the Sulfate Attack Resistance of Concrete Using EAF Slag as Fine Aggregate (전기로슬래그 잔골재를 사용한 콘크리트의 황산염침식 저항성에 관한 연구)

  • Park, Moon-Seok;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.81-87
    • /
    • 2009
  • The purpose of this study is to investigate the sulfate attack resistance of concrete using the EAF(electric arc furnace) Slag as fine aggregate. In order to figure out the effects of magnesium sulfate solution on the durability of concrete using the EAF Slag as fine aggregate, the experiments for the immerging test in the 10% magnesium sulfate solution was executed by selecting factors such as aging processes, replacement ratio(0, 10, 20, 30, 50%), and duration of immerging. The specimens were made with various EAF slag replacements for fine aggregates and with W/C ratio fixed 0.45. compressive strength and S.D.F(Sulfate Deterioration Factor), weight change, and SEM(Scanning Electron Microscope) were tested. From the test results, EAF slag aggregate treated with accelerated aging is better than treated with air aging. The compressive strength and resistance to the sulfate attack is slightly improved with an increase in the EAF slag aggregate treated with accelerated aging replacement for aggregate.

A Study about the Change of Locations of the Center of Resistance According to the Decrease of Alveolar Bone Heights and Root Lengths during Anterior Teeth Retraction using the Laser Reflection Technique (Laser 반사측정법을 이용한 전치부 후방 견인시 치조골 높이와 치근길이 감소에 따른 저항중심의 위치변화에 관한 연구)

  • Min, Young-Gyu;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.29 no.2 s.73
    • /
    • pp.165-181
    • /
    • 1999
  • Treatment mechanics should be individualized to be suitable for each patient's personal teeth and anatomic environment to get a best treatment result with the least harmful effects to teeth and surrounding tissues. Especially, the change of biomechanical reaction associated with that of the centers of resistance of teeth should be considered when crown-to-root ratio changed due to problematic root resorption and/or periodontal disease during adult orthodontic treatment. At the present study, in order to investigate patterns of initial displacements of anterior teeth under certain orthodontic force when crown-to-root ratio changed in not only normal periodontal condition but also abnormal periodontal and/or teeth condition, the changes of the centers of resistance for maxillary and mandibular 6 anterior teeth as a segment were studied using the laser reflection technique, the lever & pulley force applicator and the photodetector with these quantified variables reducing alveolar bone 2mm by 2mm for each of maxillary 6 anterior teeth until the total amount of 8mm and root 2mm by 2mm for each of mandibular 6 anterior ones until the total amount of 6mm. The results were as follows: 1. Under unreduced condition, the center of resistance during initial displacement of maxillary 6 anterior teeth was located at the point of about $42.4\%$ apically from cemento-enamel junction(CEJ) of the averaged tooth of them and kept shifting to about $76.7\%$ with alveolar bone reduction. 2. The distance from the averaged alveolar crest level of maxillary 6 anterior teeth to the center of resistance for the averaged tooth of them kept decreasing with alveolar bone reduction, but the ratio to length of the averaged root embedded in the alveolar bone was stable at around $33\%$ regardless of that. 3. Under unreduced condition, the center of resistance during initial displacement of mandibular 6 anterior teeth was located at the Point of about $43\%$ apically from CEJ of the averaged tooth of them and this ratio kept increasing to about $54\%$ with root reduction. But the distance from CEJ to the center of resistance decreased from around 5.3mm to around 3.3mm, that is to say, the center of resistance kept shifting toward CEJ with the shortening of root length. 4. A unit reduction of alveolar bone had greater effects on the change of the centers of resistance than that of root did during initial Phase of each reduction. But both of them had similar effects at the middle region of whole length of the averaged root.

  • PDF

The Resistance of Cement Mortar in Artificial Seawater (2배농도 인공해수에 대한 시멘트모르터의 저항성)

  • 문한영;김진철;김홍삼;이승태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.637-640
    • /
    • 1998
  • Generally, the durability of the reinforced concrete structures reduce when they are constructed in marine environments. The Mg ions and sulfate ions in seawater cause chemical attacks in concrete and the cracks in concrete result from corrosion of steel due to chlorides. In this study, the mortar specimens made from 5 different types of cement were immersed in artificial seawater of 2 times concentration and then we measured the compressive strength, the length change and the weight change. As a result of this study, we found that the compressive strength ratio decreased in the immersed 56days. We also found the longer the immersed days were, the more the increase of weight ratio and the length change were.

  • PDF

Evaluation of Fracture Detection Function for the Concrete by Self-Diagnosis CPGFRP (자기진단 CPGFRP의 파괴예측기능 평가를 위한 콘크리트 적용실험)

  • Choi, Hyun-Soo;Park, Jin-Sub;Jnng, Min-Soo;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.27-31
    • /
    • 2003
  • To maintain serviceability of concrete structure more than proper it is necessary not only predict service life through periodical monitor but also need monitoring system to recognize optimal time and method for repair. Recently, CPGFRP, replacing some GFRP with CF, is developed and used for monitoring concrete fraction. But dramatic resistance change of CPGFRP is showed below 0.5% strain and it is not small strain in terms of monitoring micro crack in concrete. In other word, monitoring with CF is not suitable in low stress hut hight stress. In this study, we accessed applicable possibility and reliability of CPGFRP composite as monitoring sense that is proved very sensitive to stress through domestic and oversea previous study. CPGFRP composite plays a role in specimen like steel and increases flexural strength. CPGFRP composite shows resistance increasement in micro crack. In particular, CPUFRP is more sensitive than strangage in low stress. Resistance change ratio curve is very similar to strain curve so sensitivity and reliability is very excellent to monitor concrete fracture.

  • PDF