• Title/Summary/Keyword: Resins

Search Result 1,565, Processing Time 0.024 seconds

Effects of Reaction pH and Hardener Type on Reactivity, Properties, and Performance of Urea-Formaldehyde (UF) Resin

  • Park, Byung-Dae;Kim, Yoon Soo;So, Won Tek;Lim, Kie Pyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.1-11
    • /
    • 2002
  • This study was conducted to investigate the effects of reaction pH conditions and hardener types on the reactivity, chemical structure and adhesion performance of UF resins. Three different reaction pH conditions, such as traditional alkaline-acid (7.5 → 4.5), weak acid (4.5), and strong acid (1.0), were used to synthesize UF resins which were cured by adding three different hardeners (ammonium chloride, ammonium citrate, and zinc nitrate) to measure adhesion strength. Fourier transform infrared (FT-IR) and carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopies were employed to study chemical structure of the resin prepared under three different reaction pH conditions. Adhesion strength of the resins cured with three different hardeners was determined with lap shear specimens in tension. The gel time of UF resins decreased with an increasing in the amount of both ammonium chloride and ammonium citrate added in the resins. However, the gel time increased for zinc nitrate. Both FT-IR and 13C-NMR spectroscopies showed that the strong reaction pH condition produce uronic structures in UF resin, while both alkaline-acid and weak acid conditions produce quite similar chemical species in the resins. The maximum adhesion strength was occurred with the resin prepared under strong acid pH condition. However, this study indicated that the weak acid reaction condition provide a balance between increasing resin reactivity and improving adhesion strength of UF resin. The measurement of formaldehyde emission from the panels bonded with the UF resins prepared is planned for future work.

THE EFFECT OF FERMENTED FOODS ON THE COLOR AND HARDNESS CHANGE OF DENTURE BASE ACRYLIC RESINS (발효음식이 의치상레진의 색상 및 표면경도 변화에 미치는 영향)

  • Jeon, Yeol-Mae;Lim, Heon-Song;Shin, Soo-Yeon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.344-355
    • /
    • 2004
  • Statement of problem: For a long time, many of denture base acrylic resins have been used for edentulous and partial edentulous patients because of easy manipulation and good mechanical properties, but its esthetic aspect has not been commented enough. Denture base acrylic resins also has caused esthetic problems due to discoloration or staining as in esthetic restoration. Many researches and reports have treated the problems and accomplished esthetic improvement. But these researches and reports dealt with general food colors or beverages, not with fermented foods. Purpose: This study is designed to assess what fermented foods, such as soy sauce, gochujang, and toenjang that many of Koreans have taken in, influence on the color and hardness variation of denture base acrylic resins. Materials and methods: For the procedure, twelve disks per 4 denture base acrylic resins were fabricated with a thickness of 2mm and 16mm in diameter. Each seven specimen were measured for discoloration with spectrophotometer, while the others, five specimen, for surface hardness change with Barcol hardness tester, over time. Each 12 specimen were immersed into the 4 beakers of fermented foods(soy sauces, gochujangs, toenjangs, deionized water), and $L^{*},a^{*}$, and $b^*$ values were measured for the color difference$({\Delta}E^*)$, on the 1st, 7th, and 28th day with spectrophotometer, with the measurement of surface hardness change. Each data observed was processed statistically. Results: The findings are as follows; Discoloration 1. All of denture base resins was not influenced by the kind of fermented foods, except for $QC20^{(R)}$ 2. Soy sauce and red pepper paste caused more change for denture base resins than deionized water and soy bean paste, except for Perform$^{(R)}$ 3. Most significant change was shown in Lucitone 199$^{(R)}$, whereas Perform$^{(R)}$ results in the least change for all immersed solution, with no statistical significance. Hardness change 1. Barcol hardness values in deposited specimens have been changed low degree, but with significant statistical change according to the kind of food and duration. 2. Lucitone$^{(R)}$ 199 as significantly lower Barcol hardness value than others do. Conclusion: Based on the above results, it suggests that the habitual intake of fermented foods is not helpful for the color stability of denture base acrylic resins because Soy sauce and red pepper paste mainly caused discoloration and surface hardness change. Particularly $Lucitone199^{(R)}$ shows specific discoloration and low surface hardness values. Therefore, it is recommended giving caution patients with denture of $Lucitone199^{(R)}$ especially against the habitual intake of fermented foods like soy sauce and red pepper paste.

Effects of Additives on Dental Composite Resins (치과용 복합레진에 대한 첨가제의 영향)

  • 정진희;홍광일;고재영;안세영;안광덕;한동근
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.139-145
    • /
    • 2002
  • Bis-GMA, 2.2-bis[p(2-hydroxy-3-methacryloyloxypropokyl)phenyl]Propane, is an essential component as a multifunctional methacrylate prepolymer in the light-curable polymeric dental composite resins. Two hydroxyl groups of the Bis-GMA molecule are considered to induce water sorption of the photocured composite resin in a mouth, resulting in gradual long-term deterioration of aesthetics and mechanical properties of the composite resins. In this study, some additives such as light stabilizer and antioxidant were added to composite resins to promote durability and storage stability of the last product. First of all, color change increased as a light stabilizer. Tinuvin P, was added to the composed resins and color stability was improved as an antioxidant, Irganox 245, was added to ones. In addition, when Tinuvin P and Irganox 245 were added together to the composed resins. the color stability was enhanced and mechanical properties such as diametral tensile strength before and after acceleration tests were also not greatly decreased. Therefore, when 0.5 weight Percent of Tinuvin P and 0.1 weight percent of Irganox 245 were added together to dental composite resins. the durability and color stability were enhanced, and furthermore the storage stability was also improved for the composed resins.

Studies on the Chelating Agent-Impregnated Resins for the Adsorption and Separation of Metal Ions (Ⅰ). 8-Hydroxyquinoline-Impregnated Resins (금속이온 흡착 및 분리를 위한 킬레이트 시약-침윤수지에 관한 연구 (제1보). 8-Hydroxyquinoline-침윤수지)

  • Dai Woon Lee;Tack Hyuck Lee;Kwang Ha Park
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.353-360
    • /
    • 1983
  • The adsorption behavior of 8-hydroxyquinoline (8HQ) on Amberlite XAD-4 and-7 resins was investigated by measuring its distribution coefficients under various experimental conditions, such as shaking time, pH and concentration of methanol in the medium. The application of 8HQ-impregnated-XAD resins for the absorption and separation of metal ions was studied. The maximum adsorption of 8HQ on XAD resins was observed in the 30% methanol solution having pH range from 6.0 to 9.0. The impregnation capacities of XAD resins for 8HQ were 3.81${\times}$10-2mmol, 8HQ/g, XAD-4 resins and 2.60${\times}$10-2mmol, 8HQ/g, XAD-7 resin, respectively. The 8HQ-impregnated-XAD resins were stable in pH range from 6.0 to 10.0 and the amount of 8HQ leached from XAD-4 resin by eluting with hydrochloric acid(above 5M) was negligible. The optimum pH range for the adsorption of metal ions on 8HQ-impregnated XAD resin was also 6.0 to 10.0, and the adsorption mole ratio of metal ion to 8HQ were 1 : 2 for Cu(II), Cd(II) and Ni(II), and 1 : 3 for Fe(III) at the above pH range. It was found that the absorbed metal ions on 8HQ-impregnated-XAD resins were recovered quantitatively with 5M HCl and 8HQ-impregnated-XAD-4 resin could be reusable over 5 times without decrease in its impregnation capacity.

  • PDF

Effect of Analytical Parameters of Gel Permeation Chromatography on Molecular Weight Measurements of Urea-Formaldehyde Resins

  • Jeong, Bora;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.471-481
    • /
    • 2017
  • As the molecular weight (MW) of urea-formaldehyde (UF) resins had a great impact on their properties, this work was conducted to study effect of analytical parameters of gel permeation chromatography (GPC) on the MW measurement of UF resins. GPC parameters such as flow rate, column, detector temperature, and sample injection temperature were selected to compare number-average molecular weight (Mn), weight-average molecular weight (Mw), molecular weight distribution (MWD) and polydispersity index (PDI) of two UF resins with different viscosities. As expected, UF resin with higher viscosity resulted in greater Mn and Mw than those of low viscosity UF resin. When the flow rate increased, both Mn and Mw of UF resins decreased and MWD became narrower. By contrast, both Mn and Mw increased and MWD became wide when the column, detector, and sample injection temperature increased. The column, detector, and sample injection temperature of $50^{\circ}C$ at a flow rate of $0.5m{\ell}/min$ resulted in the highest MW and broadest MWD for the GPC analysis. These results suggest that the apparent molecular size or a hydrodynamic radius of UF resin molecules dissolved in the mobile phase affect to Mn, Mw and MWD.

A Study on the Warpage in Injection Molded Part for Various Rib Design and Reinforced Resins (보강 수지의 종류와 사출성형품의 리브 설계에 따른 휨의 연구)

  • Lee, Min;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 2012
  • Most of the plastics products have been manufactured by injection molding. Molding trouble in injection-molded parts is caused by changing a molding product and molding process condition, etc. In this study, warpage in the injection molded part have been studied. Specimens are rectangular flat shape with and without ribs. Non-crystalline resins (ABS+GF30%, PC+GF30%) and crystalline resins (PP+GF30%, PA66+GF30%) were used for material. Flat shape ribs showed higher warpage than flat shape without rib by 10 to 41%. the specimens with ribs that are located parallel to flow direction has higher warpage than the specimens with rib that are located perpendicular to flow direction by 11 to 50%. crystalline resins have higher warpage than non-crystalline resins by 22 to 78%. Warpage decreases as packing time increases as injection temperature increases.

  • PDF

Effect of Mixed Polymer Treatment on the Physical Property of the Corrugated Container Board (혼합고분자처리에 의한 골판지 원지 및 골판지의 물성변화)

  • 권기훈;임부국;박성배;양재경;장준복;이종윤
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.4
    • /
    • pp.69-75
    • /
    • 1999
  • This study was performed to investigated the application of mixed resins for corrugated container board. The corrugated container board yields a sandwich structure in which a linerboard material is glued to a corrugated medium . Now, manufacturing corrugated container boards don't provide sufficient strength, and result in box failure during shipping . Therefore improvement of box strength is necessary . In this study, we intend to improve box strength by improving corrugated medium strength with mixed resins and to find the optimum treatment condition of this resins. First, we tried to mixed resins as Starch+CMC, Starch_Irea, CMC+Urea, Second, investigated to applicability of this resins for corrugated medium , and the third, measured tensile index, burst index, and edgewise compression index on liner, medium paper, and single faced corrugated container board. In this test results, we obtained that the improvement ratios of tensile index in liner and medium paper were approximately 80-185%, 60-118% , respectively. The respecting improvement ratios of edgewise compression index of single faced corrugated container board was approximately 91-124%, relatively. In addition, we concluded that optimum condition in mixing ratio was 1 :3 with CMC + Urea and the ap[plication amounts was 9% on materials. Fro manufacture of corrugated container board, optimum condition in mixing ratio was 1 : 3 with 5% CMC +Urea , because of considering to improvement of strength on cost.

  • PDF

AN IN VITRO STUDY ON CELLULAR RESPONSE OF SEVERAL DENTURE BASE RESINS (수종 의치상 레진의 세포반응에 관한 연구)

  • Jun Chul-Oh;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.247-257
    • /
    • 1992
  • The present study quantitates the in vitro cytotoxicity of a variety of denture base acrylic resins using cell culture techniques combined with image analysis to measure nuclear area and DNA contents. In this study, a comparison was made among direct curing, heat curing and microwave curing resins. The results obtained from this study were as follows : 1. Morphologically, cell process and nucleus became prominent but macroscopic difference according to the resins were nit observed. In addition, increased cellular density around the specimen were observed. 2. In DNA contents measurements, $S-G_2M$ phase cell was 15.47%, 14.58% in control and heat curing resin on 1st day and the others group $21.39\sim33.36%$ were measured. 3. Nuclear area and DNA contents were increased on 3rd day except DNA content of the microwave curing resin group. These results suggest that denture base acrylic resins stimulate gingival fibroblasts in vitro, especially stimulation of direct curing resin is larger and longer than the others.

  • PDF

Advanced 'green' composites

  • Netravali, Anil N.;Huang, Xiaosong;Mizuta, Kazuhiro
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.269-282
    • /
    • 2007
  • Fully biodegradable high strength composites or 'advanced green composites' were fabricated using yearly renewable soy protein based resins and high strength liquid crystalline cellulose fibers. For comparison, E-glass and aramid ($Kevlar^{(R)}$) fiber reinforced composites were also prepared using the same modified soy protein resins. The modification of soy protein included forming an interpenetrating network-like (IPN-like) resin with mechanical properties comparable to commonly used epoxy resins. The IPN-like soy protein based resin was further reinforced using nano-clay and microfibrillated cellulose. Fiber/resin interfacial shear strength was characterized using microbond method. Tensile and flexural properties of the composites were characterized as per ASTM standards. A comparison of the tensile and flexural properties of the high strength composites made using the three fibers is presented. The results suggest that these green composites have excellent mechanical properties and can be considered for use in primary structural applications. Although significant additional research is needed in this area, it is clear that advanced green composites will some day replace today's advanced composites made using petroleum based fibers and resins. At the end of their life, the fully sustainable 'advanced green composites' can be easily disposed of or composted without harming the environment, in fact, helping it.

Flammability Characteristics of Unsaturated Polyesters for FRP (FRP용 불포화폴리에스터 수지들의 연소 특성 연구)

  • 최원종
    • Fire Science and Engineering
    • /
    • v.12 no.4
    • /
    • pp.51-57
    • /
    • 1998
  • The thermal behavior and the flammability characteristics of four different unsaturated polyester resins were studied by performing a series of thermal analysis experiments and laboratory scale fire tests. The results of TGA and DSC reveals that the vinylester type resins have superior thermal performances when compared to the isophthalic type resins. The vinylester type resins formed a network shaped char surface after the thermal decomposition up to 55$0^{\circ}C$. Consequently, the vinylester type resings have shown lower value of burning rate than that of iso type resins. Due to the high level of flammability and toxic smoke emission, the appropriate flame retardant system should be applied to the unsaturated polyester resings.

  • PDF