• Title/Summary/Keyword: Resin-modified GIC

Search Result 13, Processing Time 0.023 seconds

COMPARISON OF SHEAR BOND STRENGTH AND MARGINAL LEAKAGE OF RESIN MODIFIED GLASS IONOMER CEMENTS (강화형 글라스 아이오노머 합착용 시멘트의 접합강도 및 변연누출에 대한 연구)

  • Park, Hye-Yang;Oh, Nam-Sik;Lee, Keun-Woo;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.647-661
    • /
    • 1997
  • The resin modified glass ionomer cements(RMGICs) have been used for years since 1989. Recently it has been developed for luting of fixed restorations. To evaluate the bond strength and marginal leakage of RMGICs for luting usage, the 80 extracted human molars which had uniform area of exposed dentin were cemented with 3 types of RMGICs(Fuji Duet, Advance, Vitremer), a conventional Glass Ionomer Cement(GIC-Fuji I), and a resin cement (Panavia 21) to base metal alloy(Ni-Cr-Be). After thermocycling the specimens were immersed in basic fuschin dye for measuring marginal leakage. The shear bond strength was measured with Instron and the maximum dye penetration was measured to 0.1mm. The types of fractured patterns were determined with stereoscope(${\times}7.5$). The results are as follows. 1. The difference between 3 RMGICs and a conventional GIC in shear bond strength was not statistically significant. It seemed that RMGICs had lower shear bond strength than resin cement. (p<0.01) 2. The mean scores of marginal leakage had no significant difference between the resin cement and 3 RMGICs but it was much higher in conventional GIC than the RMGICs (p<0.05) 3. It was determined that the manufacturer and the methods of dentin pretreatment determined the pattern of fracture surfaces and the frequency of adhesive failure between teeth and 3 RMGICs standed as in following order - Vitremer, Advance, Fuji Duet. (p<0. 01) When the fracture pattern was analyzed, it could be said that the materials and the method of dentin pretreatment have much effect on bonding states. This means that the dentin bonding agents should be improved. But the limited products in this experiment can not evaluate the physical properties of the entire RMGICs. Therefore a further study which can evaluate various RMGICs should be in progress to develope better cements.

  • PDF

Current aspects and prospects of glass ionomer cements for clinical dentistry

  • Park, Eun Young;Kang, Sohee
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.3
    • /
    • pp.169-178
    • /
    • 2020
  • Glass ionomer cement (GIC) is a tailor-made material that is used as a filling material in dentistry. GIC is cured by an acid-base reaction consisting of a glass filler and ionic polymers. When the glass filler and ionic polymers are mixed, ionic bonds of the material itself are formed. In addition, the extra polymer anion reacts with calcium in enamel or dentin to increase adhesion to the tooth tissue. GICs are widely used as adhesives for artificial crowns or orthodontic brackets, and are also used as tooth repair material, cavity liner, and filling materials. In this review, the current status of GIC research and development and its prospects for the future have been discussed in detail.

A COMPARATIVE STUDY OF WATER ABSORPTION AND RELATED CHANGES OF COMPRESSIVE STRENGTH IN THREE RESTORATIVE MATERIALS (치과용 수복재의 수분흡수도와 압축강도의 변화에 관한 연구)

  • Chang, Woo-Hyuck;Choi, Yeong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.161-170
    • /
    • 2003
  • The aesthetic restorative materials are widely used in recent dentistry, showed not only the different quality between each component but also showed that the environment of the material has important effect on the physical properties of the material. Especially, when the restoratives are restored in the mouth, and since saliva is existing, the restoratives are always exposed to water and affected by the saliva. The purpose of this study was to research and compare the change of the degree of water sorption after water immersion of three types of the resin-based materials and the compressive strength, and observe the relation between the change of the water absorbing degree and the compressive strength. Z-100(3M, U.S.A) as a composite resin, F-2000(3M, U.S.A) as a compomer and Vitremer Restoratives(3M, U.S.A) as a resin-modified GIC were used, and each specimen was made to measure the water sorption and to evaluate the compressive strength. The specimens for measurement of the water sorption and the compressive strength were divided into 4 groups(1 day, 2 weeks, 4 weeks, and 8weeks). Each specimen was filled in the 30cc vial with 20cc of distilled water during the fixed amount of period in $37^{\circ}C$. The water sorption is decided by dividing the difference of weight before and after the immersion by the volume, and the compressive strength was measured by using the instron after the immersion. The following results were obtained ; 1. The more the water sorption increased, the more the immersion period of three restorative materials was long. And the most of water sorption was obtained during the first 2 weeks(P<0.001). 2. The water sorption of resin-modified GIC was higher than composite resin and compomer. 3. The more the compressive strength decreased, the more the immersion period of three restorative materials increased(composite resin and compomer: P<0.001, resin-modified GIC: P<0.05). Especially, the amount of the reduction in compressive strength of the composite resin was the highest. 4. The more the water sorption of all materials increased, the more the compressive strength decreased(P<0.05).

  • PDF

Effects of Hybrid Coat on shear bond strength of five cements: an in-vitro study

  • Guo, Yue;Zhou, Hou-De;Feng, Yun-Zhi
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.447-452
    • /
    • 2017
  • PURPOSE. To evaluate the sealing performance of Hybrid Coat and its influence on the shear bond strength of five dentin surface cements. MATERIALS AND METHODS. Six premolars were pretreated to expose the dentin surface prior to the application of Hybrid Coat. The microscopic characteristics of the dentinal surfaces were examined with scanning electron microscopy (SEM). Then, 40 premolars were sectioned longitudinally, and 80 semi-sections were divided into a control group (untreated) and a study group (treated by Hybrid Coat). Alloy restoration was bonded to the teeth specimen using five different cements. Shear bond strength was measured by the universal testing machine. The fracture patterns and the adhesive interface were observed using a stereomicroscope. RESULTS. SEM revealed that the lumens of dentinal tubules were completely occluded by Hybrid Coat. The Hybrid Coat significantly improved the shear bond strength of resin-modified glass ionomer cement (RMGIC) and resin cement (RC) but weakened the performance of zinc phosphate cement (ZPC), zinc polycarboxylate cement (ZPCC) and glass ionomer cement (GIC). CONCLUSION. Hybrid Coat is an effective dentinal tubule sealant, and therefore its combined use with resin or resin-modified glass ionomer cements can be applied for the prostheses attachment purpose.

Comparison of Shear Bond Strength of Different Restorative Materials to Tricalcium Silicate-Based Pulp Capping Materials (Tricalcium Silicate-Based 치수복조재에 대한 수 종 수복재의 전단결합강도 비교)

  • Jeong, Hwakyong;Lee, Nanyoung;Lee, Sangho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.2
    • /
    • pp.200-209
    • /
    • 2017
  • The aim of this study was to evaluate the shear bond strength (SBS) of three typical restorative materials - glass ionomer cement (GIC), resin-modified glass ionomer (RMGIC) and composite resin (CR) - to different pulp capping materials, i.e., Theracal $LC^{TM}$ (TLC), $Biodentine^{TM}$ (BD), and $ProRoot^{TM}$ white MTA (WMTA). 90 acrylic blocks with a center hole were prepared. The holes were completely filled with three pulp capping materials (TLC, BD, and WMTA), with 30 specimens per capping material. The samples were then randomly divided into 3 subgroups of 10 specimens each and were overlaid with GIC, RMGIC, or CR. A total 9 specimen groups were prepared. The SBS was assessed using a universal testing machine. Kruskal-Wallis test and Mann-Whitney's test were performed to compare the SBS among the subgroups (p < 0.05). After the SBS test, the fractured surfaces were examined under a stereomicroscope at a magnification of $25{\times}$. The highest and lowest SBS values were recorded for TLC-CR and TLC-GIC, respectively. With regard to the SBS to the three pulp capping materials, CR was found to be superior to RMGIC and GIC. BD showed a higher SBS compared to TLC and WMTA when used with GIC.

Effect of Nano-filled Protective Coating on Microhardness and Wear Resistance of Glass-ionomer Cements (나노필러가 함유된 표면보호재가 글라스 아이오노머 시멘트의 미세경도와 마모저항성에 미치는 효과)

  • Ryu, Wonjeong;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.226-232
    • /
    • 2019
  • The purpose of this study was to investigate the effect of adding a protective coating on the microhardness and wear resistance of glass ionomer cements (GICs). Specimens were prepared from GIC and resin-modified GIC (RMGI), and divided into 3 groups based on surface protection: (1) no coating (NC), (2) Equia coat coating (EC), and (3) un-filled adhesive coating (AD). All specimens were then placed in distilled water for 24 h. Surface hardness (n = 10) was evaluated on a Vickers hardness testing machine. Wear resistance (n = 10) was evaluated after subjecting the specimen to thermocycling for 10,000 cycles using a chewing simulator. Data were analyzed using a one-way ANOVA and the Kruskal-Wallis test. Surface hardness was highest in the NC groups, followed by the EC and AD groups. The wear depth of GI + NC was significantly higher than that of all RMGI groups. EC did not significantly lower the wear depth compared to AD. Based on these results, it was concluded that although EC does not increase the surface microhardness of GIC, it can increase the wear resistance.

Comparative Evaluation of the Fluoride Releasing Ability and Microbial Attachment of Glass-Hybrid Restorative Material

  • MinKi Choi;Howon Park;Siyoung Lee;Haeni Kim;Juhyun Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.2
    • /
    • pp.132-139
    • /
    • 2024
  • This study aimed to compare the fluoride-releasing ability and degree of microbial attachment of a newly developed glass-hybrid restorative material (GH) with those of a high-viscosity glass ionomer (HvGIC), resin-modified glass ionomer (RMGI), and composite resin (CR). In addition, the correlation between fluoride-releasing ability and microbial attachment between materials was evaluated. Specimens were prepared in a disc shape and divided into 4 groups according to the materials (GH, HvGIC, RMGI, and CR). The fluoride release experiments were performed in each group (n = 15). The amount of fluoride released was measured on days 1, 3, 7, 14, 28, and 42 after storage. For the microbial attachment experiment, 12 specimens were produced per group using Mutans Streptococci (S.mutans ), a cariogenic microorganism. S. mutans was cultured on the specimens for 24 hours, and the number of bacteria was measured. GH had the highest cumulative fluoride release and showed a significant difference when compared with RMGI (p = 0.001) and CR (p < 0.0001). Microbial attachment was the lowest in GH; however, no significant difference was observed between the materials (p = 0.169). There was no significant correlation between fluoride release from materials and microbial attachment (p > 0.05). From this perspective, remineralization of low-mineralized areas could be expected due to the high fluoride release of GH, and the effect of delaying the progression of dental caries could be predicted from the low cariogenic microbial attachment. Therefore, GH might be a useful restorative material for treating immature permanent teeth with hypomineralized enamel. However, further studies are needed about the degree of remineralization of hypomineralized areas after restoration and the capacity to recharge fluoride.

COMPARISON OF MARGINAL LEAKAGE OF WEDGE-SHAPED CLASS V CAVITY ACCORDING TO RESTORATIVE MATERIALS (쐐기 형태의 5급와동에서 수복재료에 따른 변연 미세누출의 비교)

  • Jang, Hyun-Joo;Lee, Hee-Joo;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2000
  • The purpose of this study was to assess the effects of restorative materials on the marginal leakage of wedge-shaped class V cavity. The study was performed in vitro in 25 defect-free permanent, extracted teeth. Wedge-shaped class V cavities were prepared and then the teeth were randomly selected and restored according to the following. Group A : restoration with Tetric Ceram(composite resin) Group B : restoration with Tetric flow(flowable resin) Group C : restoration with Compoglass after acid etching(compomer) Group D : restoration with Compoglass(compomer) Group E : restoration with Fuji II LC improved(resin-modified GIC) After thermocycling, the specimens were immersed in 5% basic fuchsin solution for 6 hours and sectioned longitudinally through the center of the restoration. The degree of marginal leakage was measured as the extent of dye penetration under the stereomicroscope. The data were analysed using one-way ANOVA. When significant differences found, multiple comparisons were made using Duncan's Multiple Range Test. The results were as follows: 1. The occlusal margins of all groups except for Fuji II LC improved showed lesser leakage than gingival margins and there was statistically significant difference(p<0.05). 2. At the occlusal margins, group A, B showed same marginal leakage scores, and others were decreased as group C, D, E in that order. There were statistically significant difference between group A, Band group D, E, group C and group E(p<0.05). 3. At the gingival margins, group B, C showed same marginal leakage scores, and others were decreased as group A, D, E in that order. But there was statistically significant difference between group B, C and group E(p<0.05). 4. In the Compoglass restoration, acid-etching technique was beneficial for marginal sealing ability at all of margins. But there was no statistically significant difference (p>0.05). In the restorations for wedge-shaped class V cavities, resin restoration with acid etching technique is recommended.

  • PDF

Effect of casein phosphopeptide-amorphous calcium phosphate on fluoride release and micro-shear bond strength of resin-modified glass ionomer cement in caries-affected dentin

  • Agob, Jamila Nuwayji;Aref, Neven Saad;Al-Wakeel, Essam El Saeid
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.45.1-45.11
    • /
    • 2018
  • Objectives: This study was conducted to evaluate fluoride release and the micro-shear bond strength of resin-modified glass ionomer cement (RMGIC) in casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-remineralized caries-affected dentin (CAD). Materials and Methods: Exposed dentin surfaces of 30 human third molar teeth were divided into 2 equal groups for evaluating fluoride release and the micro-shear bond strength of RMGIC to CAD. Each group was subdivided into 3 equal subgroups: 1) control (sound dentin); 2) artificially demineralized dentin (CAD); 3) CPP-ACP remineralized dentin (remineralized CAD). To measure fluoride release, 15 disc-shaped specimens of RMGIC (4 mm in diameter and 2 mm in thickness) were bonded on one flat surface of the dentin discs of each group. Fluoride release was tested using ion chromatography at different intervals; 24 hours, 3, 5, 7 days. RMGIC micro-cylinders were built on the flat dentin surface of the 15 discs, which were prepared according to the assigned group. Micro-shear bond strength was measured after 24 hours water storage. Data were analyzed using 1- and 2-way analysis of variance and the post hoc least significant difference test (${\alpha}=0.05$). Results: Fluoride detected in solutions (at all intervals) and the micro-shear bond strength of RMGIC bonded to CPP-ACP-remineralized dentin were significantly higher than those bonded to artificial CAD (p < 0.05). Conclusions: Demineralized CAD consumes more fluoride released from RMGIC into the solution for remineralization than CPP-ACP mineralized dentin does. CPP-ACP increases the micro-shear bond strength of RMGIC to CAD.

Evaluation of internal adaptation of dental adhesive restorations using micro-CT

  • Kwon, Oh-Hyun;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • Objectives: The internal adaptation of composite restorations with or without resin modified glass ionomer cement (RMGIC) was analyzed non-destructively using Microcomputed tomography (micro-CT). Materials and Methods: Thirty intact human teeth were used. The specimens were divided into 3 groups. In the control group, the cavities were etched with 10% phosphoric acid for 15 sec. Composite resin was filled into the cavity without adhesive. In group 1, light cured glass ionomer cement (GIC, Fuji II LC, GC) was applied as a base. The cavities were then etched, bonded, light cured and filled with composites. In group 2, the cavities were then etched, bonded, light cured and filled with composites without base application. They were immersed in a 25% silver nitrate solution. Micro-CT was performed before and after mechanical loading. One-way ANOVA with Duncan analysis was used to compare the internal adaptation between the groups before or after loading. A paired t-test was used to compare internal adaptation before and after mechanical loading. All statistical inferences were made within the 95% confidence interval. Results: The silver nitrate solution successfully penetrated into the dentinal tubules from the pulp spaces, and infiltrated into the gap between restoration and pulpal floor. Group 2 showed a lower adaptation than the control group and group 1 (p < 0.05). There was no significant difference between the control group and group 1. For all groups, there was a significant difference between before and after mechanical loading (p < 0.05). Conclusions: The internal adaptation before and after loading was better when composites were bonded to tooth using adhesive than composites based with RMGIC.