• Title/Summary/Keyword: Resin-based composite

Search Result 311, Processing Time 0.023 seconds

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

Comparison of Shear Bond Strength of Different Restorative Materials to Tricalcium Silicate-Based Pulp Capping Materials (Tricalcium Silicate-Based 치수복조재에 대한 수 종 수복재의 전단결합강도 비교)

  • Jeong, Hwakyong;Lee, Nanyoung;Lee, Sangho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.2
    • /
    • pp.200-209
    • /
    • 2017
  • The aim of this study was to evaluate the shear bond strength (SBS) of three typical restorative materials - glass ionomer cement (GIC), resin-modified glass ionomer (RMGIC) and composite resin (CR) - to different pulp capping materials, i.e., Theracal $LC^{TM}$ (TLC), $Biodentine^{TM}$ (BD), and $ProRoot^{TM}$ white MTA (WMTA). 90 acrylic blocks with a center hole were prepared. The holes were completely filled with three pulp capping materials (TLC, BD, and WMTA), with 30 specimens per capping material. The samples were then randomly divided into 3 subgroups of 10 specimens each and were overlaid with GIC, RMGIC, or CR. A total 9 specimen groups were prepared. The SBS was assessed using a universal testing machine. Kruskal-Wallis test and Mann-Whitney's test were performed to compare the SBS among the subgroups (p < 0.05). After the SBS test, the fractured surfaces were examined under a stereomicroscope at a magnification of $25{\times}$. The highest and lowest SBS values were recorded for TLC-CR and TLC-GIC, respectively. With regard to the SBS to the three pulp capping materials, CR was found to be superior to RMGIC and GIC. BD showed a higher SBS compared to TLC and WMTA when used with GIC.

Effects of Crosslinking Agent and Flame Retardant on the Dielectric Properties of Poly(phenylene ether)-based Polymer Substrate Material (폴리페닐렌에테르계 고분자 기판 소재의 유전특성에 대한 가교제 및 난연제의 영향)

  • Kim, Dong-Kook;Park, Seong-Dae;Yoo, Myong-Jae;Lee, Woo-Sung;Kang, Nam-Kee;Lim, Jin-Kyu;Kyoung, Jin-Bum
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • Polymer substrates were fabricated by using poly (phenylene ether) as a base resin, N,N'-m-phenylenedimaleimide (PDMI) as a crosslinking agent and decabromodiphenylethane as a flame retardant. The effects of crosslinking agent and flame retardant on physical properties such as dielectric property of the substrate were investigated. Thermal curing feature of PDMI with or without an initiator was analyzed by DSC, and then, PPE-PDMI test compositions were designed based on this result. Composite sheets were cast by film coater, laminated under vacuum and pressure, and then, the changes of dielectric constant, dielectric loss, peel strength, solder heat resistance and inflammability according to increasing amount of PDMI and flame retardant were evaluated, Dielectric constant and dielectric loss showed increasing trend with increasing amount of PDMI and flame retardant, but solder heat resistance and inflammability were improved. Peel strength was obtained higher than 1 kN/m when PDMI above 10 wt% was added, but slightly decreased as the amount of flame retardant increased. From the measured gel contents, the reaction mechanism of PPE-PDMI system was deduced to the formation of network structure by crosslinking PDMI with PPE rather than the formation of semi-IPN structure. In conclusion, the polymer composite substrate materials with dielectric constant of 2.52$\sim$2.65 and dielectric loss below 0.002 at 1 GHz were obtained and they will be proper for high frequency applications.

Effect of layer combinations with nanocomposite and low-shrinkage composite resins on their color and mechanical properties (나노복합레진과 저수축 복합레진의 복합 층으로 이룬 시편이 색과 물리적 성질에 미치는 영향)

  • Park, Wan-Ky;Choi, An-na;Son, Sung-Ae;Kwon, Yong Hoon;Kang, Eun-Sook;Park, Jeong-Kil
    • Korean Journal of Dental Materials
    • /
    • v.44 no.2
    • /
    • pp.129-139
    • /
    • 2017
  • This study investigated the colors and mechanical properties of layered dental composites. Four nanocomposite resins (Aelite LS, Grandio, Tetric EvoCeram, Filtek Z350XT) and a silorane-based composite resin (P90) were used for overlying and underlying materials, respectively, with different thickness combinations. Colors, translucency parameter (TP), flexural and compressive properties were evaluated. All tested specimens had different color coordinates, although all were of A3 shade. Color coordinates and TP values of layered specimens better matched those of the corresponding overlying product as the thickness of the overlying product was increased. High TP values were related with high $b^*$ value differences between specimens (p<0.05). Both flexural strength and modulus, compressive strength and modulus of layered specimens with different thickness combinations were mostly lower than those of the corresponding overlying products, respectively, in their non-layered state.

The Distribution of Patients and Treatment Trends in the Department of Pediatric Dentistry, Yonsei University Dental Hospital for Last 5 Years (최근 5년간 연세대학교 치과대학병원 소아치과의 환자 분포 및 치료 경향)

  • Kang, Chungmin;Lee, Hyoseol;Choi, Hyungjun;Choi, Byungjai;Son, Heungkyu;Lee, Jaeho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.41 no.2
    • /
    • pp.134-144
    • /
    • 2014
  • The aim of this study was to investigate changes in treatment patterns within pediatric dentistry departments by analyzing the distribution of patients and treatment trends. To that end, treatment charts based on electronic medical records (EMR) from the Yonsei University Dental Hospital from 2008 to 2012 were collected and analyzed. The results showed a decrease in the number of new patients and patients cared for by non-specialists, while the number of foreign patients has increased. The under 2 years-old group accounted for a large portion of new patients. Dental caries, dental trauma, and malocclusion ranked as the top complaints. In terms of restoration treatment, the proportion of patients receiving composite resin, amalgam, and sealant has decreased, whereas self-curing glass ionomer and preventive resin restoration have increased. Single-visit endodontic treatment has been increasing, with a decreasing trend in multi-visit endodontic treatment. The rate of conservative pulp treatment, such as pulp capping and pulpotomy, has increased. For reducing patient anxiety, treatments under sedation have increased, especially with the use of nitric oxide. This investigation into the latest treatment trends and patient characteristics is expected to help pediatric dentists to make appropriate treatment plans.

The effect of tooth brushing and thermal cycling on a luster change of ceromers finished with different methods

  • Cho, Lee-Ra;Yi, Yang-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.3
    • /
    • pp.336-347
    • /
    • 2000
  • Statement of problem. Luster loss in esthetic anterior ceromer restoration can occur and can be related with rough surface texture. Understanding durability of surface finishing methods like polishing and surface coating have critical importance. Purpose. This study evaluated the effect of tooth brushing and thermal cycling on surface luster of 3 ceromer systems (Artglass, Targis, Sculpture) treated with different surface finishing methods. Material and methods. Seventy-two samples were prepared: 12 for control group Z100, 12 for Artglass, 24 for Targis, and 24 for Sculpture. Half of the Targis and Sculpture were polished according to the manufacturer's recommendation. The rest of the samples were coated with staining and glazing solution for Targis and Sculpture, respectively. All specimens were subjected to 10,000 cycles between $5^{\circ}C\;and\;55^{\circ}C$ with 30 seconds dwell time. Tooth brushing abrasion tests were performed in a customized tooth brushing machine with 500g back and forth for 20,000 cycle. Luster comparisons were based on grading after direct observation, and light reflection area was measured with Image analysis software. Results. All materials showed an decrease in luster grade after thermal cycling and tooth brushing. The post-tooth brushing results revealed that the glazed Sculpture had greater mean luster grade than did any other groups. While, the stained Targis group showed greatest changes after tooth brushing (p < 0.05), polished Targis and Sculpture did not show significant changes. However, glazed Sculpture showed discretely fallen out glaze resin. Conclusion. From the results of this study, all of the ceromer specimens were much glossy than control composite group after tooth brushing. coatings used for Targis and Sculpture had not durability for long term use.

  • PDF

Synthesis and Properties of Liquid Crystal Compounds and Epoxy Resin Based Side Chain Liquid Crystal Polymers I. Low Molecular Weight Liquid Crystal Compounds (방향족 액정동족체 및 Epoxy형 측쇄 액정고분자의 합성 및 성질 I. 저분자 액정 동족체)

  • Park, Se Kwang;Ahn, Wonsool;Keum, Chang Dae;Park, Lee Soon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.66-70
    • /
    • 1998
  • Several liquid crystalline monomers were synthesized and characterized to utilize as new matrix materials of liquid crystal/polymer composite films for display application. Liquid crystalline compounds which have azo group as center link, cyano group at one of the terminal position in common and bromoalkyl(azo(n)), azidoalkyl(AZI(n)), aminoalkyl(ALC(n)) as the terminal group were synthesized and identified respectively by FT-lR, $^1H-NMR$ spectrometer and elemental analysis. All these compounds exhibited nematic liquid crystalline region in the certain temperature range as determined by DSC and polarized optical microscope. These liquid crystalline compounds also showed a typical even-odd effect in both $T_{KN}$ and $T_{NI}$ due to conformational change as the length of terminal alkyl chain, $-(CH_2)n-$. was varied.

  • PDF

Preparation and Performance Improvement of Polylactic acid based composites by stereocomplex (스테레오 컴플렉스를 이용한 폴리유산 복합재 제조 및 성능 개선)

  • Hong, Chae-Hwan;Kim, Yeon-Hee;Park, Jun-Seo;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1671-1676
    • /
    • 2015
  • A unique crystallization behavior of poly(L-lactide)(PLLA)/poly(D-lactide)(PDLA) stereocomplex(SC) was observed when a PLLA/PDLA blend was subjected to the specific melting conditions. Therefore, we tried to blend PLLA and PDLA at overall composition to form PLA stereocomplexes. Moreover, impact modifier and reinforcement materials such as talc and glass fiber added to enhance the mechanical and thermal properties such as impact strength and heat distortion temperature(HDT). As a result, we got one representative result, one composite recipe with HDT $115^{\circ}C$. For more economic technology, we tried to blend PLLA and Polypropylene at overall composition and we got another representative result which could be applied to current PP/talc composites and ABS materials. The core technology of this might be the well dispersion of glass fibers into the matrix resin such as PP, PLLA and impact strength modifier.

Studies on Rheological Properties and Cure Behaviors of Difunctional Epoxy/Biodegradable Poly(butylene succinate) Blends (2관능성 에폭시/생분해성 폴리부틸렌 숙시네이트 블렌드의 유변학적 특성 및 경화거동에 관한 연구)

  • 박수진;김승학;이재락;민병각
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.8-15
    • /
    • 2002
  • In this work, the effect of biodegradable poly(butylene succinate)(PBS) in difunctional epoxy(21:P) resin was investigated in terms of rheological properties, cure kinetics, thermal stabilities, and mechanical interfacial properties. Rheological properties of the blend system were measured under isothermal condition using a rheometer. Cross-linking activation energies($\textrm{E}_c$) were determined from the Arrhenius equation based on gel time and curing temperature. The $\textrm{E}_c$ was increased in the presence of 10 wt% PBS as compared with neat 2EP. From the DSC results of the blends, the cure activation energies($\textrm{E}_a$) showed a similar behavior with $\textrm{E}_c$ due to the increased intermolecular interaction between 2EP and PBS. The decomposed activation energies($\textrm{E}_t$) for the thermal stability derived from the integral method of Horowitz-Metzger equation, were also increased in 10 wt% PBS. In addition, 20 wt% PBS showed the highest critical stress intensity factor($\textrm{E}_{IC}$). which was explained by increasing the fracture toughness of the 2EP/PBS blend systems.

Effect of Anodized Carbon Fiber Surfaces on Mechanical Interfacial Properties of Carbon Fibers-reinforced Composites (탄소섬유의 양극산화가 탄소섬유 강화 복합재료의 기계적 계면 특성에 미치는 영향)

  • 박수진;오진석;이재락
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.16-23
    • /
    • 2002
  • In this work, the effect of anodic oxidation on surface characteristics of high strength PAN-based carbon fibers was investigated in mechanical interfacial properties of composites. The surface properties of the carbon fibers were determined by acid-base values, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angles. And their mechanical interfacial properties of the composites were studied in interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). As a result, the acidity or the $O_{ls}/C_{ls}$ ratio of carbon fiber surfaces was increased, due to the development of the oxygen functional groups. Consequently, the anodic oxidation led to an increase in surface free energy of the carbon fibers, mainly due to the increase of its specific (or polar) component. The mechanical interfacial properties of the composites, including ILSS and $K_{IC}$, had been improved in the anodic oxidation on fibers. These results were explained that good wetting played an important role in improving the degree of adhesion at interfaces between fibers and epoxy resin matrix.