• 제목/요약/키워드: Resin inlay

검색결과 62건 처리시간 0.027초

레진 인레이 합착시 지각과민처리제의 사용이 상아질 결합강도에 미치는 영향 (EFFECT OF A DESENSITIZER ON DENTINAL BOND STRENGTH IN CEMENTATION OF COMPOSITE RESIN INLAY)

  • 한세희;조영곤
    • Restorative Dentistry and Endodontics
    • /
    • 제34권3호
    • /
    • pp.223-231
    • /
    • 2009
  • 본 연구는 인레이 와동에서 인상을 채득하기 전 지각과민처리제 (Isodan)과 2단계 전부식 접착시스템 (One-Step)과 단일단계 자가부식 접착시스템 (All-Bond SE)으로 처리한 후, 복합레진 인레이를 자가 접착형 레진시멘트인 BisCem으로 합착시키는 경우 레진 인레이의 상아질에 대한 미세인장결합강도와 주사현미경적인 분석을 통하여 비교하였다. 본 연구의 결과, 지각과민처리제인 Isodan만을 사용하는 경우 레진 인레이의 결합강도를 감소시킬 수 있으므로 단독 사용보다는 단일 단계 자가부식 시스템 (All-Bond SE)과 같이 사용하는 것이 추천된다.

보관조건과 열처리에 따른 복합레진의 표면경도에 관한 연구 (A STUDY ON SURFACE HARDNESS OF COMPOSITE RESINS ACCORDING TO STORAGE CONDITON AND HEAT TREATMENT)

  • 강승훈;민병순
    • Restorative Dentistry and Endodontics
    • /
    • 제19권1호
    • /
    • pp.194-204
    • /
    • 1994
  • The purpose of this study was to evaluate the surface hardness of composite resins according to heat treatment. storage condition and storage time. In this study. two kinds of composite resin inlays and one kind of conventional posterior composite resin were used as experimental materials. One hundred eighty composite resin specimens were constructed from composite resin inlays and conventional posterior composite resin. The conditions of this study were heat treatment. storage condition and storage time. Hardness readings were taken from the top surface of each samples using the Vickers microhardness tester(MHT-l. Matsuzawa. Japan}. The following results from this study were obtained: 1. Regardless of storage condition. both composite resin inlay and conventional posterior composite resin have a higher surface hardness under heat treatment than not. 2. Composite resins with heat treatment have a higher surface hardness under dry storage than under water immersion. 3. In case of Clearfil Photo Posterior and Brilliant Enamel with heat treatment. there was no significant difference with time. but Clearfil CR Inlay with heat treatment. there was statistical difference after 24 hours. 4. Surface hardness of composite resins with coarse hybrid type was higher than that of composite resin with fine hybrid type.

  • PDF

An Archaeochemical Microstructural Study on Koryo Inlaid Celadon

  • Ham, Seung-Wook;Shim, Il-wun;Lee, Young-Eun;Kang, Ji-Yoon;Koh, Kyong-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1531-1540
    • /
    • 2002
  • With the invention of the inlaying technique for celadon in the latter half of the 12th century, the Koryo potters reached a new height of artistic and scientific achievement in ceramics chemical technology. Inlaid celadon shards, collected in 1991 during the surface investigation of Kangjin kilns found on the southwestern shore of South Korea, were imbedded in epoxy resin and polished for cross-section examination. Backscattered electron images were taken with an electron microprobe equipped with an energy dispersive spectrometer. The spectrometer was also used to determine the composition of micro-areas. Porcelain stone, weathered rock of quartz, mica, and feldspar composition were found to be the raw material for the body and important components in the glaze and white inlay. The close similarity between glaze and black inlay in the microstructure suggests that the glaze material was modified by adding clay with high iron content, such as biotite, for use as black inlay. The deep soft translucent quality of celadon glaze is brought about by its microstructure of bubbles, remnant and devitrified minerals, and the schlieren effect.

복합레진으로 제작한 인레이 보철물 구조에 따른 교합면 부위의 2차원 변연 적합도 및 내면 부위의 3차원 정확성 분석 (Analysis of the 2-dimensional marginal fit of the occlusal surface and the 3-dimensional accuracy of the inner surface of the occlusal surface according to the inlay prosthesis structure made of composite resin)

  • 김동연;이태희;박동인;박진영;정일도;이하나;김지환;김웅철
    • 대한치과기공학회지
    • /
    • 제41권1호
    • /
    • pp.21-27
    • /
    • 2019
  • Purpose: To evaluate 2D and 3D of occulsal, mesial-occlusal and mesial-occlusal-distal cavity of composite resin inlay. Methods: Abutment tooth 16, 36 of FDI system was selected for the study. Inlay prostheses classified as occlusal cavity (OC group), mesial-occlusal (MOC) and mesial-occlusal-distal cavity (MODC) were prepared using composite resin. Composite resin was injected with composite resin in prepared tooth cavity and then photopolymerized with UV light. Additional thermal polymerization was performed. Marginal gap of composite resin inlays were measured by digital microscope(x160) with silicone replica technique. The data was analyzed from statistical software for Kruskal-Wallis test (${\alpha}=0.05$). 3-dimensional analysis was analyzed through superimposition method. Results: The smallest 2D marginal fit measure of the three groups was $47.0{\pm}21.6{\mu}m$ in the MOC group. The largest 2D marginal was $69.1{\pm}33.8{\mu}m$ in the MODC group. In the trueness of the three groups, the most accurate figure was $14.4{\pm}2.3{\mu}m$ for the MODC group. In Precision, the most accurate figure was $14.5{\pm}4.3{\mu}m$ for the MODC group. Conclusion : In this study, 2D marginal fit of OC, MOC, and MODC cavities fabricated with composite resin was applicable to all clinical applications. In the 3D inner surface accuracy evaluation, the MODC group showed the accuracy results.

CAD/CAM으로 제작된 세라믹 인레이의 변연 및 내면 적합성 (MARGINAL AND INTERNAL FIT OF CAD/CAM-MANUFACTURED CERAMIC INLAY)

  • 손호현
    • Restorative Dentistry and Endodontics
    • /
    • 제23권2호
    • /
    • pp.618-629
    • /
    • 1998
  • CAD/CAM-fabricated ceramic restorations nowadays are used as alternatives of amlagam and posterior composite resin restorations, especially in the cases of inlay restorations. But the reported results on marginal and internal fit of CAD/CAM-fabricated ceramic inlay have showed considerable difference. In this study, to evaluate the marginal and internal fit of CEREC2-fabricated ceramic inlay restoration and to compare with the fit of gold inlay and amalgam restoration, standardized Class II MO cavities were prepared in forty extracted caries-free human premolars. The teeth with prepared cavities were divided into 4 groups of ten teeth each. In group 1, CEREC2-fabricated ceramic inlays were treated with Scotchbond Multi-Purpose Plus(SMP plus) and cemented with Scotchbond Resin Cement. In group 2, casted gold inlays were cemented in the same method as in group 1. In group 3, casted gold inlays were cemented with zinc-phosphate cement. And in group 4, the prepared cavities were restored with amalgam. Restored teeth were thermocycled, stored in 1% methylene blue for 24 hours, and sectioned faciolingually and mesiodistally using EXAKT. Sectioned surfaces were observed with stereomicroscope and the gaps were measured at 9 points of mesiodistally sectioned surface and 7 points of faciolingually sectioned surface. The measured data were treated by Kruskal-Wallis one way ANOVA and Student-Newman-Keuls test. 1. The differences among measured gaps at each points were statistically significant for 4 experimental groups (P<0.05). 2. There were statistically significant differences in the measured gaps at each points between group 1 and group 2, group 1 and group 3, group 1 and group 4, group 2 and group 4, and group 3 and group 4 (P<0.05). 3. There were not statistically significant differences in the measured gaps at each points between group 2 and group 3 (P>0.05). 4. In the cases of inlay restorations(group 1, group 2, group 3), the gaps at internal line angle(distopulpal, axiogingival, faciopulpal, linguopulpal line angle) had a tendency to increase. In the cases of amalgam restorations(group 4), the gaps at occlusal margin, gingival margin and axiogingival line angle were greater than those at the other parts of cavities. 5. In CEREC2-fabricated ceramic inlays which were treated with Scotchbond Multi-Purpose Plus and cemented with Scotchbond Resin Cement, the mean gaps were $111{\mu}m$ at cavity margins, $168{\mu}m$ at vertical walls of cavities, $225{\mu}m$ at internal line angles and $123{\mu}m$ at cavity floors.

  • PDF

Cementation technique in indirect tooth colored restoration

  • Park, Sung-Ho
    • 대한치과보존학회:학술대회논문집
    • /
    • 대한치과보존학회 2001년도 추계학술대회(제116회) 및 13회 Workshop 제3회 한ㆍ일 치과보존학회 공동학술대회 초록집
    • /
    • pp.595-595
    • /
    • 2001
  • As the interest for esthetic restoration is increasing, the usage of composite resin is increasing. The usage of composite resin is not limited to anterior teeth but is spreading to posterior area using direct & indirect methods. Generally, dual or chemical cure resin cement has been used for setting composite or porcelain inlay restoration. However, chemical cure resin cement has limited working time and it's difficult to remove excess cement from the tooth and the restoration. The dual cured composite is also difficult to remove from the tooth surface.(omitted)

  • PDF

합착용 복합레진시멘트로 합착한 Machinable Ceramic과 상아질 사이의 인장강도에 대한 실험적 연구 (TENSILE STREGNTH BETWEEN MACHINABLE CERAMIC AND DENTIN CEMENTED WITH LUTING COMPOSITE RESIN CEMENTS)

  • 조병훈
    • Restorative Dentistry and Endodontics
    • /
    • 제23권1호
    • /
    • pp.487-501
    • /
    • 1998
  • In the case of CAD/CAM ceramic inlay restorations, if isthmus width is widened too much, it may cause fracture of remaining tooth structure or loss of bonding at the luting interface because of excessive displacement of buccal or lingual cusps under occlusal loads. So to clarify the criterior of widening isthmus width, this study was designed to test the tensile bond strength and bond failure mode between dentin and ceramic cemented with luting composite resin cements. Cylindrical ceramic blocks(Vita Cerec Mark II, d=4mm) were bonded to buccal dentin of 40 freshly extracted third molars with 4 luting composite resin cements(group1 : Scotchbond Resin Cement/Scotchbond Multi-Purpose, group2 : Duolink Resin Cement/ All-Bond 2, group3: Bistite Resin Cement/Ceramics Primer, and group4:Superbond C&B). Tensile bond test was done under universal testing machine using bonding and measuring alignment blocks(${\phi}ilo$ & Urn, 1992). After immersion of fractured samples into 1 % methylene blue for 24 hours, failure mode was analysed under stereomicroscope and SEM. Results: The tensile bond strength of goup 1, 2 & 4 was $13.97{\pm}2.90$ MPa, $16.49{\pm}3.90$ MPa and $16.l7{\pm}4.32$ MPa, respectively. There was no statistical differences(p>0.05). But, group 3 showed significantly lower bond stregnth($5.98{\pm}1.l7$ MPa, p<0.05). In almost all samples, adhesive fractures between dentin and resin cements were observed. But, in group 1, 2 & 4, as bond strength increased, cohesive fracture within resin cement was observed simultaneously. And, in group 3, as bond strength decreased, cohesive fracture between hybrid layer and composite resin cement was also observed. Cohesive fracture within dentin and porcelain adhesive fracture were not observed. In conclusion, although adhesive cements were used in CAD/CAM -fabricated ceramic inlay restorations, the conservative priciples of cavity preparation must be obligated.

  • PDF

중합방법에 따른 복합레진 인레이의 물리적 성질에 관한 연구 (A STUDY ON THE PHYSICAL PROPERTIES OF A COMPOSITE RESIN INLAY BY CURING METHODS)

  • 조성아;조영곤;문주훈;오행진
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.254-266
    • /
    • 1997
  • This study was to know the usefulness of argon laser for composite resin, to prove the polymerized effect of heat treatment of composite resin inlay and to get the curing method for optimal physical properties of composite resin inlay. In this study we used four light curing units and one heat curing unit: Visilux $II^{TM}$, a visible light gun: $SPECTRUM^{TM}$, an argon laser: Unilux AC$^{(R)}$ and Astorn XL$^{(R)}$, visible light curing unit: CRC-$100^{TM}$ for heat treatment. Compared to a control group, we divided the experemental groups into five as follows: Control group: Light curing(Visilux $II^{TM}$) Experimental group 1 : Light curing(Visilux $II^{TM}$) + Light curing(Unilux AC$^{(R)}$) Experimental group 2: Light curing(Visilux $II^{TM}$) + Light curing(Astron XL$^{(R)}$) + Heat treatment(CRC-$100^{TM}$) Experimental group 3 : Laser curing($SPECTRUM^{TM}$) Experimental group 4 : Laser curing($SPECTRUM^{TM}$) + Light curing(Unilux AC$^{(R)}$) Experimental group 5 : Laser curing($SPECTRUM^{TM}$) + Light curing(Astron XL$^{(R)}$) + Heat treatment (CRC-$100^{TM}$) According to the above classification, we made samples through the curing of Clearfil CR Inlay$^{(R)}$, which is a composite resin for inlay, in a separable cylindrical metal mold and polycarbonate plate. And then, we measured and compared the value of compressive strength, diametral tensile strength and the surface micro hardness of each sample. The results were as follows : 1. Among the experimental groups, group 5 showed the highest value of compressive strength, $157.50{\pm}10.24$ kgf and control group showed the lowest value of compressive strength, $103.93{\pm}21.93$ kgf. Control group showed significant difference with the experimental groups(p<0.001). Group 2 which was treated by the heat showed higher compressive strength than that of group 1 which was not, and there was significant difference between group 1 and group 2(p<0.001). Group 5 which was treated by heat showed higher compressive strength than group 4 which was not, and there was significant difference group 4 and group 5(p<0.001). 2. Among the experimental groups, group 5 showed the highest value of diametral tensile strength, $95.84{\pm}1.97$ kgf and control group showed the lowest value of diametral tensile strength, $81.80{\pm}2.17$ kgf. Control group which was cured by visible light showed higher diametral tensile strength than group 3 which was cured Argon Laser. Group 2 which was treated by heat showed higher compressive strength than that of group 1 which was not, and there was significant difference between group 1 and group 2(p<0.001). Group 5 which was treated by heat showed higher compressive strength than group 4 which was not, and there was a significant difference group 4 and group 5(p<0.001). 3. Among the experimental groups, group 5 showed the highest value of microhardness of top surface, $148.42{\pm}9.57$ kgf and control group showed the lowest value of microhardness, $111.43{\pm}7.63$ kgf. In the case of bottom surface, group 5 showed the highest value of $146.19{\pm}7.62$ kgf, and control group showed the lowest, $104.03{\pm}11.05$ kgf. Group 3 which was cured by Argon Laser showed higher diametral tensile strength than control group which was cured only with a visible light gun. Group 2 which was treated by heat showed higher compressive strength than that of group 1 which was not, and there was a significant difference between group 1 and group 2(p<0.001). Group 5 which was treated by heat showed higher compressive strength than group 4 which was not, and there was a significant difference group 4 and group 5(p<0.001). 4. According to the above results, we took a conclusion that argon laser can be used as a useful unit for curing the composite resin and heat treatment can improve the physical properties of the composite resin inlay.

  • PDF