• Title/Summary/Keyword: Resilient materials

Search Result 134, Processing Time 0.028 seconds

강화노반 및 궤도하부노반 재료의 회복탄성계수 (Resilient Moduli of Sub-ballast and Subgrade Materials)

  • 박철수;최찬용;최충락;목영진
    • 한국철도학회논문집
    • /
    • 제11권1호
    • /
    • pp.54-60
    • /
    • 2008
  • 다층 탄성모델에 근거한 철도노반 설계는 열차의 반복 윤하중에 의한 궤도 하부 구조의 거동을 반영하는 응력 의존적인 회복탄성계수$(E_R)$가 각 층의 중요한 입력물성치가 된다. 그러나 반복하중을 가하는 기존의 회복탄성계수 시험법은 비용이 고가이고 시험장비와 숙련도에 따라 결과의 일관성이 떨어지는 단점이 있어 실질적인 적용에 어려움이이었다. 본 연구에서는 이를 극복하기 위해 동적물성치를 이용한 대체 회복탄성계수 시험법을 적용하여 철도노반의 회복탄성계수를 결정하였다. 강화노반에 주로 사용되는 쇄석의 회복탄성계수는 측정된 동적물성치와 열차 운행 중 경험하는 강화노반의 응력을 고려하여 결정되었고, 체적응력과 축차응력의 거듭제곱 형태로 예측모델을 나타내었다. 쇄석의 회복탄성계수는 체적응력이 증가함에 따라 전체적으로 증가하는 경향을 보였고 축차응력이 증감함에 따라 감소하였다. 상 하부노반의 주재료인 SM계열 토사 재료에 대하여 회복탄성계수를 평가하였고, 축차응력만을 이용한 거듭제곱 형태의 예측모델과 상관성이 매우 높게 나타났다.

Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading

  • Mishra, Manish;Ozawa, Shogo;Masuda, Tatsuhiko;Yoshioka, Fumi;Tanaka, Yoshinobu
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권3호
    • /
    • pp.140-144
    • /
    • 2011
  • PURPOSE. Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading. MATERIALS AND METHODS. Two dimensional finite element models of cylinderical implant, abutments and bone made by titanium or polyoxymethylene were simulated with the aid of Marc/Mentat software. Each model represented bone, implant and titanium or polyoxymethylene abutment. Model 1: Implant with 3 mm titanium abutment, Model 2: Implant with 2 mm polyoxymethylene resilient material abutment, Model 3: Implant with 3 mm polyoxymethylene resilient material abutment and Model 4: Implant with 4 mm polyoxymethylene resilient material abutment. A vertical load of 11 N was applied with a frequency of 2 cycles/sec. The stress distribution pattern and displacement at the junction of cortical bone and implant was recorded. RESULTS. When Model 2, 3 and 4 are compared with Model 1, they showed narrowing of stress distribution pattern in the cortical bone as the height of the polyoxymethylene resilient material abutment increases. Model 2, 3 and 4 showed slightly less but similar displacement when compared to Model 1. CONCLUSION. Within the limitation of this study, we conclude that introduction of different height resilient material abutment with different heights i.e. 2 mm, 3 mm and 4 mm polyoxymethylene, does not bring about significant change in stress distribution pattern and displacement as compared to 3 mm Ti abutment. Clinically, with the application of resilient material abutment there is no significant change in stress distribution around implant-bone interface.

현장공진주시험을 이용한 보조기층 재료의 대체 $M_R$ 시험법 (Alternative Method of Determining Resilient Modulus of Subbase Materials Using Free-Free Resonant Column Test)

  • 권기철;김동수
    • 한국도로학회논문집
    • /
    • 제2권2호
    • /
    • pp.149-161
    • /
    • 2000
  • 회복탄성계수$(M_R)$로 표현되는 보조기층 재료의 탄성계수는 연성 포장체의 역학적 설계에 대단히 중요한 물성치이다. 그러나 반복재하식 $M_R$ 시험을 일상적 시험으로 적용하기에는 너무 시험과정이 복잡하고, 고가이며, 많은 시험시간을 필요로 한다. 본 연구에서는 보조기층 재료의 변형특성을 고려하여 현장공진주시험(EF-RC)을 이용한 대체 $M_R$ 시험법을 개발하였다. 보조기층 재료의 변형특성 평가를 위하여 변형률 크기 및 평균주응력의 탄성계수에 대한 영향을 조사하였다. 제안한 대체 $M_R$ 시험법으로 결정된 탄성계수와 반복재하식 $M_R$ 시험에서 결정된 회복탄성계수는 서로 잘 일치하여 제안된 기법의 효용성을 확인하였다.

  • PDF

대형반복삼축시험에 의한 강화노반 재료의 회복탄성계수 특성 분석 (Characteristics of Resilient Modulus of Reinforced-Roadbed Materials Using Large Repetitive Triaxial Test)

  • 임유진;이진욱;황정규;박미연
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1115-1122
    • /
    • 2011
  • Reinforced-Roadbed materials are usually composed of crushed stones. Repeated load application can induce deformation in the reinforced-roadbed layer so that it causes irregularity of track. Thus it is important to develop a prediction model of elastic modulus based on stress-strain relation under repeatitive load in order to investigate behavior of reinforced roadbed. The prediction model of elastic modulus of the material can be obtained from repeated triaxial test. However, a proper size of the sample for the test must be used. In this study, a large repeatitive triaxial test apparatus with the sample size of diameter of 30 cm and height of 60cm was adapted for performing test of the crushed stone reinforced-roadbed considering large particle size to get resilient modulus Mr. The obtained resilient modulus was compared to shear modulus obtained from mid size resonant column test. The sample size effect is somewhat large enough so that it is required to design a scale factor based on similarity law in order to use smaller samples for getting elastic modulus of the crushed stone reinforced-roadbed material. A scale factor could be obtained from this study.

  • PDF

친환경 연성모르타르와 섬유로드를 이용한 내진보강 방안에 관한 연구 (A Study on the Seismic Rehabilitation Method through Using Environmentally-friendly Ductile Mortar and Fiber Materials)

  • 백종명;신민호;김한배;김박진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3237-3250
    • /
    • 2011
  • As the growing concern about environment and earthquake for the concrete structure, many seismic rehabilitation and retrofitting methods have recently been studied but they are not coping enough with the changes of structure, specificly various problems have been found in seismic rehabilitation method - both in exposure or non exposure - when they are implemented to the underground structure, utility conduit, water supply facilities, underground wall, parking lot, road pavement, and elevated structure etc. This study is about the seismic rehabilitation method using environmentally friendly functional inorganic mortar and resilient material, and it is effectively retrofitted seismic performance as it reinforces not only physical strength, but also flexural and bond strength from the resilient material, and it has been analyzed and evaluated when the environmentally friendly functional inorganic mortar and the resilient material are applied so as to countermeasure the effect of earthquake and viable problems and approved for possibility of various applications and wide use.

  • PDF

뜬바닥층의 하중조건에 따른 경량충격음 저감량 분석 (Analysis of the Reduction of Light-weight Imapct Noise for Load Condition of Floating Floor)

  • 김명준;이성호;양재훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.356-360
    • /
    • 2006
  • Recently, for the purpose of improving the isolation performance of impact noise, many resilient materials have been installed in a residential building. As one of the reduction method for improving the performance of light-weight impact noise, this study is focused on the load condition of floating layer over resilient material. We studied the correlation between the mass or load of the floating layer and the reduction of light-weight impact noise by experiments in reverberation chamber for testing the impact noise. The results show that the reduction of impact noise is improved by increasing the mass per unit area of floating layer until about $140kg/m^2$. But the reduction is not obvious by adding extra mass on the floating layer.

  • PDF

함정용 펌프류 장비의 고체음저감 (Structure-borne Noise Reduction of Pump Machineries for Naval Ships)

  • 김현실;김재승;강현주;김상렬
    • 연구논문집
    • /
    • 통권29호
    • /
    • pp.83-90
    • /
    • 1999
  • In naval ships, pump machineries are the major sources of airborne and structure-borne noise. Noise is critical issue in ships not only it causes annoyance to crews, but also it can increase the underwater radiated noise, which is crucial in anti-submarine warfare. In present study, it is discussed the reduction of structure-borne noise of pump machineries by showing several examples. The most typical and effective solution is to use double resilient mount system. However, in cases where double resilient system cannot be applied due to space and weight increase, rubber pad can be used to reduce the structure-borne noise. In principle, the concept of structure-borne noise reduction is the same as that of vibration isolation.

  • PDF

Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles

  • Mahzad Esmaeili-Falak;Reza Sarkhani Benemaran
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.583-600
    • /
    • 2023
  • The resilient modulus (MR) of various pavement materials plays a significant role in the pavement design by a mechanistic-empirical method. The MR determination is done by experimental tests that need time and money, along with special experimental tools. The present paper suggested a novel hybridized extreme gradient boosting (XGB) structure for forecasting the MR of modified base materials subject to wet-dry cycles. The models were created by various combinations of input variables called deep learning. Input variables consist of the number of W-D cycles (WDC), the ratio of free lime to SAF (CSAFR), the ratio of maximum dry density to the optimum moisture content (DMR), confining pressure (σ3), and deviatoric stress (σd). Two XGB structures were produced for the estimation aims, where determinative variables were optimized by particle swarm optimization (PSO) and black widow optimization algorithm (BWOA). According to the results' description and outputs of Taylor diagram, M1 model with the combination of WDC, CSAFR, DMR, σ3, and σd is recognized as the most suitable model, with R2 and RMSE values of BWOA-XGB for model M1 equal to 0.9991 and 55.19 MPa, respectively. Interestingly, the lowest value of RMSE for literature was at 116.94 MPa, while this study could gain the extremely lower RMSE owned by BWOA-XGB model at 55.198 MPa. At last, the explanations indicate the BWO algorithm's capability in determining the optimal value of XGB determinative parameters in MR prediction procedure.

연성포장의 노반재료로서 EPS 지오폼의 회복탄성계수에 관한 적합성 연구 (A Feasibility Study on Resilient Modulus of Expanded Polystyrene (EPS) Geofoam as a Flexible Pavement Subgrade Material)

  • 박기철;장용채
    • 한국지반환경공학회 논문집
    • /
    • 제12권12호
    • /
    • pp.63-70
    • /
    • 2011
  • EPS지오폼은 다양한 강도, 밀도, 그리고 크기로 생산되는 일종의 화학합성물이다. EPS지오폼에 관한 근래의 발전으로 인해서, 그것의 사용은 급격하게 늘어나고있다. 이것은 초경량 재료로서 단위중량이 약 $0.16{\sim}0.47kN/m^3$ 인데, 이것은 채움재의 용도로 가장 대표적인 흙의 단위중량 $6.3{\sim}15.7kN/m^3$와 동일한 내구성을 가진다. 이런 장점에도 불구하고, EPS지오폼에 대한 회복탄성계수 표준측정방법은 보고된 바가 없는 실정이다. 본 연구의 주된 목적은 연성포장의 노반에 적용될 때의 EPS회복탄성계수의 적합성을 연구하는 것이다. 적합성연구는 삼축압축시험의 결과를 토대로 이루어졌으며, 연성포장의 노반재료로써 EPS는 실험결과의 분석과 근본적인 회복탄성의 특성을 비교분석하여 그것의 적합성을 확인해 보았다.

T사 바닥충격음 실험동 소개 (Introduction of Floor Impact Sound Insulation Performance Test Lab. of T Company)

  • 백건종;신훈;송민정;장길수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.17-20
    • /
    • 2008
  • To develop floor impact sound resilient materials of apartment house effectively, floor impact sound insulation performance test lab. was designed and constructed in T company. Introducing specification and basic performance of this lab. could be helpful in plan and design of another lab. Floor space size of this lab. is $4.2m{\times}5.5m$ and this size is similar with that of living room of usual apartment house's (about $100m^2$) and the height of lab. is 2.4m. Slab thickness is designed by 180mm. Frequency characteristics is similar to general apartment house. Reverberation time of sound receiving room displays 1.26sec in 125Hz by establishing sound-absorbing materials. For light weight impact sound insulation performance of concrete bare floor structure is estimated by $L_{i,AW}\;=\;73$ and for heavy weight is estimated by $L_{i,Fmax,AW}\;=\;50$. Sound pressure level distribution of sound receiving room is ranged very uniformly. With these results, floor impact sound resilient materials could be evaluated and the results could be trusted by comparison tests.

  • PDF