• Title/Summary/Keyword: Resilient Design

Search Result 194, Processing Time 0.028 seconds

Reliability Based Design of Caisson type Quay Wall Using Partial Safety Factors (부분안전계수를 이용한 케이슨식안벽의 신뢰성설계법)

  • Kim, Dong-Hyawn;Yoon, Gil-Lim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.3
    • /
    • pp.224-229
    • /
    • 2009
  • Partial safety factors(PSFs) for Level I reliability based design of caisson type quay walls were calculated. First order reliability method(FORM) based PSFs are the functions of sensitivities of limit state function with respect to design random variables, target reliability index, characteristic values and first moment of random variables. Modified PSFs for water level and resilient water level are newly defined to keep consistency with the current design code. In the numerical example, PSFs were calculated by using a target reliability index. Seismic coefficient is defined to show extreme distribution. It was found that PSFs for seismic coefficient becomes smaller as the return period for design seismic coefficient grows longer.

A Study on the Indonesian Ikat Textile Design (인도네시아 이캇 직물 디자인에 관한 연구)

  • 문미영
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.6
    • /
    • pp.866-886
    • /
    • 1995
  • The purpose of this study is to analyze the pattern and the meaning of textiles, and decorative techniques of ikat weaving and dyeing in Indonesia. The textile design also analyzes by examining the method of ikat techniques such as warp ikat, weft ikat and double ikat, and by classifying the style of regions. The most common motifs are geometric designs of spirals, meanders, straight lines, triangles, and circles which are influenced by outside world. Although these motifs or symbols have been evident since prehistoric times, their design and meaning have been continually reinterpreted as changes in the ceremonies and rituals. While motifs such as reptiles, birds, and human figures, depicted in spiral, hooked and rhomb configurations, have been identified among the most resilient features of Indonesian textile design, new meanings have been added to these ancient forms, and designs have been transformed and reinterpreted to suit local conceptions. Since textiles are a visual expression of Indcufsian life, textiles place the individual symbolically within social milieu, identifying rank, family, locality and religious affiliations. Textiles represent a link between the human and the spiritual realm, and a vehicle for the display of sacred and secular potency Ikat textiles play to embody special transforming powers and sacred mediating qualities, providing protection and evoking life-enriching forces for individuals or social group.

  • PDF

A Study on Aseismatic Performance of Base Isolation Systems Using Resilient Friction Pot Bearing (탄성마찰포트받침을 적용한 교량의 내진성능에 관한연구)

  • Oh, Ju;Hyeon, Gi Hwan;Park, Yeon Su;Park, Seong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.127-134
    • /
    • 2008
  • For more districted seismic design and attemped multi-bridge continuity, the existing seismic design is difficulted to treat seismic activity. So, many company applied multi-fixed point and damper or isolator, which is effective for decreasing seismic energy, on period shift, decentralization and damping. But, there is hard to design special bridge with adjusted seismic system because of absence seismic device and insufficient design experience. Therefore, the study on behavior characteristics of designed bridge with various seismic device is performed to utilize the result of this for selection of adequate seismic device.

Design of a Low Power Self-tuning Digital System Considering Aging Effects (노화효과를 고려한 저전력 셀프 튜닝 디지털 시스템의 설계)

  • Lee, Jin-Kyung;Kim, Kyung Ki
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • It has become ever harder to design reliable circuits with each nanometer technology node; under normal operation conditions, a transistor device can be affected by various aging effects resulting in performance degradation and eventually design failure. The reliability (aging) effect has traditionally been the area of process engineers. However, in the future, even the smallest of variations can slow down a transistor's switching speed, and an aging device may not perform adequately at a very low voltage. Therefore, circuit designers need to consider these reliability effects in the early stages of design to make sure there are enough margins for circuits to function correctly over their entire lifetime. However, such an approach excessively increases the size and power dissipation of a system. As the impact of reliability, new techniques in designing aging-resilient circuits are necessary to reduce the impact of the aging stresses on performance, power, and yield or to predict the failure of a system. Therefore, in this paper, a novel low power on-chip self-tuning circuit considering the aging effects has been proposed.

New method environment for art design of nanocomposite brick facade of the building

  • Jie Xia;Gholamreza Soleimani Jafari;F. Ghoroughi
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.499-507
    • /
    • 2024
  • The paper delves into an emerging paradigm shift in architectural design, focusing on the development of a cutting-edge methodological framework for the artistic enhancement of nanocomposite brick facades in building construction. This innovative approach represents a fusion of art and science, harnessing the potential of advanced nanotechnology to redefine the aesthetic and functional properties of building exteriors. Central to this new methodology is the integration of state-of-the-art materials and fabrication techniques, aimed at not only elevating the visual appeal of architectural structures but also enhancing their structural robustness and environmental sustainability. By leveraging the unique characteristics of nanocomposite materials, the proposed method opens up new possibilities for pushing the boundaries of traditional brick facade design. Through a meticulous exploration of the intricacies involved in implementing this novel approach, the paper elucidates the transformative impact it can have on the architectural landscape. By marrying creativity with technical precision, the method environment for art design of nanocomposite brick facades promises to usher in a new era of sustainable, visually captivating, and structurally resilient building facades that are poised to redefine the very essence of architectural aesthetics.

Estimate of the Bearing Capacity on Subbase and Subgrade with Dynamic Plate Bearing Test (동평판재하시험을 이용한 도로하부 재료의 지지력 평가)

  • Youn, Ilro;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.53-60
    • /
    • 2013
  • The compaction control method of national road substructure is using field density test to determine the relative compaction and plate bearing test to check the load bearing capacity. However, these two tests digitize a construction site manager's judgment based on his experience, so mechanical basis is weak. Resilient modulus method, which is recently being used to resolve such problem, is evaluated as a rational design method of pavement structure that can rationally reflect the stress-strain state of pavement materials that is caused by the condition of load repetition of vehicle load. However, the method of measuring the resilient modulus is difficult and lengthy, and it has many problems. To replace it, light falling weight test is recently being proposed as a simple test method. Therefore, this research uses dynamic plate loading test, which quickly and simply measures the elastic modulus of the subgrade and sub-base construction and site of maintenance, to judge the possibility of compaction control of the stratum under the road, and it proposes relation formula by analyzing the result of static load test.

Strength and Deformation Characteristics on Stabilized Pavement Geomaterials(I): Laboratory Test (안정처리된 도로하부 지반재료의 강도 및 변형특성(I): 실내실험)

  • Park, Seong-Wan;Ji, Jong-Keun;Park, Hee-Mun;Ohm, Byung-Sik
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.57-68
    • /
    • 2008
  • The stabilization techniques in the pavement foundations have advantages in increasing pavement performance and reducing pavement thickness. By mixing the geomaterials and stabilizer, the economical and structurally sound layer can be added in the pavement system. Until now, these techniques have been applied in the field empirically and the design criteria for stabilization has not been established. The purposes of this paper are to evaluate the mechanistic properties of stabilizers used for geomaterials and determine the type and optimum amount of stabilizer for each technique. The unconfined compressive testing and repeated load resilient modulus test were conducted on the coarse grained soils mixed with various types of stabilizer to investigate the strength and deformation characteristics of stabilized geomaterials. It is found from the test that the unconfined compressive strength of stabilized geomaterials is more than ten times higher than that of gradation modified geomaterials. The resilient modulus of stabilized geomaterials increases by $6{\times}10$ times compared to the original soils and tends to increase with increase of volumetric and deviatoric stress, and amount of stabilizer.

  • PDF

A Experimental Study on the Proper Particle Gradation of Sub-base to Consider the Recent Climate Change (기후변화를 고려한 포장 보조기층의 적정입도분포에 관한 실험연구)

  • Choi, Jaesoon;Han, Nuri
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.51-56
    • /
    • 2013
  • Recently, a top record of hourly-based rainfall has been changed annually and flood damages of road have increased. To solve this problem, pavements for drainage were developed and practically constructed but there was no considerations on sub-base. In this research, we proposed standard for distribution of particle size of sub-base to consider strength characteristic and drainage property. We focused to compare coefficients strength and permeability by laboratory tests. Prior to tests, 4 samples were selected under the consideration on the international or domestic design guideline. In the tests, strength characteristics were compared with resilient modulus. Also, permeability characteristics were compared with coefficient of upward and downward permeability. Resilient modulus was determined with MR test using cyclic triaxial testing system. Two permeability tests were carried out. One is variable head permeability test for downward drainage and the other is Rowe Cell test for upward drainage. In the case of Rowe Cell test, middle-sized sampler with 150mm diameter was used for this study. Consequentially, we tried to find the optimum distribution of particle size to satisfy both of strength and permeability characteristics for sub-base.

A Conceptual Approach for the Effects of COVID-19 on Digital Transformation

  • Fu, Jia;Kim, Injai
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.211-227
    • /
    • 2023
  • Purpose In the contemporary landscape, marked by the enduring impact of COVID-19 and the recent disruptions stemming from the conflict in Ukraine, the purpose of this study is to navigate the era characterized by pervasive risk and uncertainty. Specifically, the study aims to dissect the impact of the COVID-19 outbreak on digital transformation, exploring the factors influencing this process and considering the multifaceted dynamics at play. The focus extends to the post-COVID-19 landscape, scrutinizing the implications and meanings of digital transformation both before and after the pandemic. Additionally, the study delves into future digital trends, with particular attention to climate and environmental issues, emphasizing corporate responsibilities in averting crises similar to COVID-19. The overarching goal is to provide a holistic perspective, shedding light on both positive and negative facets of digital transformation, and advocating for regulatory enhancements and legal frameworks conducive to a balanced and resilient digital future. Design/methodology/approach This study employs a comprehensive approach to analyze the impact of the COVID-19 outbreak on digital transformation. It considers various facets, such as smart devices reshaping daily routines, transformative changes in corporate ecosystems, and the adaptation of government institutions to the digital era within the broader context of the Fourth Industrial Revolution. The analysis extends to the post-COVID-19 landscape, examining the implications and meanings of digital transformation. Future digital trends, especially those related to climate and environmental issues, are prognosticated. The methodology involves a proactive exploration of challenges associated with digital transformation, aiming to advocate for regulatory enhancements and legal frameworks that contribute to a balanced and resilient digital future. Findings The findings of this study reveal that the digital economy has gained momentum, accelerated by the proliferation of non-face-to-face industries in response to social distancing imperatives during the COVID-19 pandemic. Digital transformation, both preceding and succeeding the onset of the pandemic, has precipitated noteworthy shifts in various aspects of daily life. However, challenges persist, and the study highlights factors that either bolster or hinder the transformative process. In the post-COVID-19 era, corporate responsibilities in averting crises, particularly those resembling the pandemic, take center stage. The study emphasizes the need for a holistic perspective, acknowledging both positive and negative facets of digital transformation. Additionally, it calls for proactive measures, including regulatory enhancements and legal frameworks, to ensure a balanced and resilient digital future.

A study on Robust Topology for the Resilient Ontology-based Dynamic Multicast Routing Protocol (노드의 복원력이 있는 온톨로지 기반의 동적 멀티캐스트 라우팅 연구)

  • Kim, Sun-Guk;Doo, Kyung-Min;Chi, Sam-Hyun;Lee, Kang-Whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.188-194
    • /
    • 2007
  • We propose a new ad hoc multicast routing protocol for based on the ontology scheme called inference network. Ontology knowledge-based is one of the structure of context-aware. We will have developed an algorithm that will design multi-hierarchy Layered networks to simulate a desired system.

  • PDF