• Title/Summary/Keyword: Resilient Channel

Search Result 88, Processing Time 0.02 seconds

GIS-based Assessment of the Lateral Connectivity in the Cheongmi-cheon Stream, South Korea (청미천에서 GIS 기반 횡적 연결성 평가)

  • Jin, Seung-Nam;Cho, Hyunsuk;Chu, Yunsoo;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.3
    • /
    • pp.154-162
    • /
    • 2019
  • Lateral connectivity between the channel and the floodplains has been damaged by the levee construction and channelization in most streams of South Korea. The purpose of this study was to develop a technique for easily and remotely assessing lateral connectivity using GIS in the streams and to evaluate the effectiveness of the assessment method by applying it to Cheongmi-cheon Stream, a representative stream in the central Korean Peninsula. The metrics of the lateral connectivity assessment are composed of (1) existence of remaining wetlands and (2) land use property as a habitat quality of the former floodplain outside the levee and (3) existence of levee barrier, (4) connectivity to the stream and (5) connectivity to the upland natural habitats as a connectivity from the channel through floodplain to the upland forest. According to the result of applying the assessment method to Cheongmi-cheon Stream, the lateral connectivity was severely damaged due to the levee construction and land use change in the former floodplain. The GIS-based assessment of the lateral connectivity developed in this study is expected to be used as a useful tool for identifying limitations of current connectivity in various attempts to restore lateral connectivity in riparian ecosystems.

Dataset of Long-term Monitoring on the Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (I) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (I))

  • Lee, Chanjoo;Kim, Dong Gu;Ji, Un;Kim, Jisung
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • Naeseong Stream is a sand-bed river that flows through the northern area of Gyeongbuk province. It is characterized by dynamic sandy bedforms developed in response to the seasonal hydrological fluctuation and by its unique riverine landscape called "white river." However, changes including construction of Yeongju Dam from 2010 and the extensive vegetation establishment around 2015 occurred along the Naeseong Stream. This paper aims to analyze climate, hydrology, and water quality as factors and to examine the possibility of channel changes accordingly. The second least precipitation during the last 60 years happened in 2015, which led to the lowest peak discharge in 50 years. The sediment characteristics of Naeseong Stream were not significantly different along the upstream and downstream reaches, but it was confirmed that annual minimum water level of the stream decreased continuously regardless of the dam construction. This suggests that intermittent drought and change in water quality are likely to provide favorable conditions for riparian vegetation establishment and the resulting physical changes have affected riverbed degradation. Therefore, it is necessary to conduct diversified monitoring in connection with river vegetation change in order to analyze the causes of river changes.

Riparian Vegetation Expansion Due to the Change of Rainfall Pattern and Water Level in the River (강우 발생 패턴변화와 하천 수위 변화가 하천식생 발생에 미치는 영향)

  • Kim, Won;Kim, Sinae
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.238-247
    • /
    • 2020
  • This study aims to examine the causes of the rapid expansion of riparian vegetation in river channels in recent years. Accordingly, the changes in the monthly rainfall were analyzed at 19 locations over the period of 1984 to 2018. Moreover, the changes in the water levels of the target river sections of Seom River, Cheongmi River, and Naeseong River were analyzed. The results showed that rainfall increased by 30% in April and decreased by up to 49% in the May-September period since 2012. Between 2012 and 2018, when rainfall decreased, the inundation time of the floodplains of the target rivers decreased considerably. The floodplains of Seom River and Cheongmi River were not inundated since 2012 and 2013, respectively. In the case of Naeseong River, the inundation time of the low-water channel drastically decreased since 2013, and there was no inundation in 2015. Consequently, riparian vegetation settled rapidly on the floodplain without any disturbance and continued to expand. The settling and expansion of riparian vegetation reduce the flood capacity of the river channel and can also lead to the loss of the water ecosystem due to terrestrialization.

Dataset of Long-term Investigation on Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (II))

  • Lee, Chanjoo;Kim, Dong Gu;Hwang, Seung-Yong;Kim, Yongjeon;Jeong, Sangjun;Kim, Sinae;Cho, Hyeongjin
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.34-48
    • /
    • 2019
  • Naeseong Stream is a natural sand-bed river that flows through mountainous and cultivated area in northern part of Gyeongbuk province. It had maintained its inherent landscape characterized by white sandbars before 2010s. However, since then changes occurred, which include construction of Yeongju Dam and the extensive vegetation development around 2015. In this study, long-term monitoring was carried out on Naeseong Stream to analyze these changes objectively. This paper aims to provide a dataset of the investigation on channel morphology and vegetation for the period 2012-2018. Methods of investigation include drone/terrestrial photography, LiDAR aerial survey and on-site fieldwork. The main findings are as follows. Vegetation development in the channel of Naeseong Stream began around 1987. Before 2013 it occurred along the downstream reach and since then in the entire reach. Some of the sites where riverbed is covered with vegetation during 2014~2015 were rejuvenated to bare bars due to the floods afterwards, but woody vegetation was established in many sites. Bed changes occurred due to deposition of sediment on the vegetated surfaces. Though Naeseong Stream has maintained its substantial sand-bed characteristics, there has been a slight tendency in bed material coarsening. Riverbed degradation at the thalweg was observed in the surveyed cross sections. Considering all the results together with the hydrological characteristics mentioned in the precedent paper (I), it is thought that the change in vegetation and landscape along Naeseong Stream was mainly due to decrease of flow. The effect of Yeongju Dam on the change of the riverbed degradation was briefly discussed as well.

Delineation and Land Use Analysis of the Former Floodplains Isolated by Levees in the Cheongmi-cheon Stream, Korea (청미천에서 제방에 의해 격리된 옛홍수터의 경계 설정과 토지이용 분석)

  • Jin, Seung-Nam;Cho, Kang-Hyun;Cho, Hyung-Jin
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • For the restoration of lateral connectivity between channel and floodplain, it is important to find the former floodplain and to characterize its land use in streams which were channelized by the levee construction for the flood protection. The aim of this study is to map the former floodplains and to assess its land use pattern in the Cheongmi-cheon Stream, Korea. The former floodplains were explored by being overlapped on a digital elevation model (DEM), digital topographic map and design flood level using a geographical information system (GIS) in the Cheongmi-cheon Stream basin. The land use of the identified former floodplains was classified by land-use map. The total number of the former floodplains was 104 and their total area was $11.9km^2$ in the Cheongmi-cheon Stream. The land use pattern of the former floodplains was mostly farmland (87.1%). The former floodplains were usually surrounded by mountain forest in the downstream of the Cheongmi-cheon Stream. These former floodplains are probably suitable for restoration of lateral connectivity because of lower ratio of urban area but higher ratio of farmland. The results of delineation and land use analysis of the former floodplain can be used as a baseline data for planning stream restoration in the Cheongmi-cheon Stream.

Applications and Perspectives of Fluvial Biogeomorphology in the Stream Management of South Korea (우리나라 하천 관리에서 생물지형학의 적용과 전망)

  • Kim, Daehyun;Kim, Won;Kim, Eunsuk;Ock, Giyoung;Jang, Chang-Lae;Choi, Mikyoung;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • In fluvial and riparian ecosystems, biogeomorphological research has considered the complex, multi-way relationships between biological and hydro-geomorphological components over a wide range of spatial and temporal scales. In this review, we discussed the scope and processes of fluvial biogeomorphology by explaining (1) the multi-lateral interactions between organisms and hydrogeomorphic conditions, (2) the relationships between biodiversity and habitat heterogeneity, and (3) the effects of disturbance on ecosystem patterns. Over time, an organism-landform complex along streams transitions in the sequences of geomorphic, pioneer, biogeomorphic, and ecological stages. Over space, water flow and sediment distributions interact with vegetation to modify channel topography. It is the habitat heterogeneity in streams that enhances riparian biodiversity. However, in the areas downstream of a dam, habitat types and conditions are substantially damaged and biodiversity should be reduced. In South Korea, riparian vegetation flourishes in general and, in particular, invasive species actively colonize in accordance with the changes in the fluvial conditions driven by local disturbances and global climate change. Therefore, the importance of understanding reciprocal relationships between living organisms and hydrogeomorphic conditions will ever increase in this era of rapid climate change and anthropogenic pressure. The fluvial biogeomorphic framework reviewed in this article will contribute to the ecological management and restoration of streams in Korea.

A Fast Error Concealment Using a Data Hiding Technique and a Robust Error Resilience for Video (데이터 숨김과 오류 내성 기법을 이용한 빠른 비디오 오류 은닉)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.143-150
    • /
    • 2003
  • Error concealment plays an important role in combating transmission errors. Methods of error concealment which produce better quality are generally of higher complexity, thus making some of the more sophisticated algorithms is not suitable for real-time applications. In this paper, we develop temporal and spatial error resilient video encoding and data hiding approach to facilitate the error concealment at the decoder. Block interleaving scheme is introduced to isolate erroneous blocks caused by packet losses for spatial area of error resilience. For temporal area of error resilience, data hiding is applied to the transmission of parity bits to protect motion vectors. To do error concealment quickly, a set of edge features extracted from a block is embedded imperceptibly using data hiding into the host media and transmitted to decoder. If some part of the media data is damaged during transmission, the embedded features are used for concealment of lost data at decoder. This method decreases a complexity of error concealment by reducing the estimation process of lost data from neighbor blocks. The proposed data hiding method of parity bits and block features is not influence much to the complexity of standard encoder. Experimental results show that proposed method conceals properly and effectively burst errors occurred on transmission channel like Internet.

Physicochemical Characteristics and Nutrient Release from Sediment in an Urban Stream (도심하천 퇴적물의 이화학적 특성과 영양염 용출)

  • Kim, Tae Hoon;Jung, Jae Hoon;Choi, Sun Hwa;Choi, I Song;Oh, Jong Min
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.167-176
    • /
    • 2015
  • The water quality of the Gulpo Stream flowing through Incheon, Bucheon, Seoul, and Kimpo is getting worse due to a slow flow rate and bank constructions by stream channelization as well as an inflow of pollutants from living-sewages and factory-sewages. Besides, a dry stream phenomenon caused by a lack of maintenance water upstream makes a self-purification system worse, and the water quality of the Gulpo Stream is currently at its lowest level. The accumulated sludge of the streambed is mostly formed by the deposition of particle pollutants due to the slow flow rate and an artificially straightened stream channel. This accumulated sludge adsorbs a great quantity of organic materials and heavy metals. Because of the internal contamination possibility by a re-gushing, even after the pollution source is removed, it can cause future water pollution. Without a total examination as previously recommended, it is considered difficult to accomplish practical efficiency. In conclusion, the management of periodic sediment management such as dredging would be necessary in the Gulpo Stream because sediment could be an internal pollution source of stream water under anaerobic conditions.

A Comparison of Geomorphological and Hydrological Methods for Delimitation of Flood Plain in the Mankyung River, Korea (지형학적 및 수문학적 방법에 의한 만경강 홍수터 획정 방법 비교)

  • Kim, Ji-Sung;Lee, Chan-Joo;Kim, Joo-Hun;Choi, Cheonkyu;Kim, Kyu-Ho
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.128-136
    • /
    • 2015
  • River areas include channels, floodplains and all the areas affected by physical and ecological processes in river systems. It is noticeably different from present riparian zone which is bounded by dykes. In this study, two methods for delineation of a floodplain are proposed, which are used for evaluation of the function of a river. One of them is a geomorphology-based technique and the other is hydrology-based inundation analysis. For the Mankyung River, these two methods are applied to delineate the floodplain area. Areas delineated with both methods are mutually compared. The results show that the geomorphology-based method is suitable for the delineation of a valley bottom, including the floodplain in a broader sense, which is unlike an inundated area reflecting contemporary hydrologic conditions. Compared with other flood frequency areas, a 100-year flood inundation area was found reasonable to represent the spatial extent of a floodplain without regard to the longitudinal location along a river. However, it is necessary in certain rivers reach where the division of a channel exists to compare a geomorphological analysis on a valley bottom with an inundation area of different frequencies.

Effects of Habitat Disturbance on Fish Community Structure in a Gravel-Bed Stream, Korea (자갈하천에서 서식처 교란이 어류 군집구조에 미치는 영향)

  • Kim, Seog Hyun;Lee, Wan-Ok;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.49-60
    • /
    • 2014
  • Fish assemblages play an integral role in stream ecosystem and are influenced by stream environmental conditions and habitat disturbances. Fish community structures and habitat parameters of U.S. EPA rapid bio-assessment protocol were surveyed to investigate the effect of stream environment and habitat disturbance on fish communities at 13 study sites in the Gapyeong Stream, a typical gravel-bed stream. Principal component analysis (PCA) based on data from habitat assessment at each study site indicated that the study sites were differentiated by habitat parameters such as embeddedness, velocity/depth regime and sediment deposition, which were related with bed slope. A total of 46 species belonging to 12 families were collected in the Gapyeong Stream. A dominant species was Zacco koreanus, subdominant species was Z. platypus. Hierarchical cluster analysis based on species abundance classified fish communities into the three main groups along the stream longitudinal change. Non-metric multidimensional scaling (NMDS) portrayed that fish community structures were related to major habitat parameters, i.e., epifaunal substrate/available cover, embeddedness, velocity/depth regime, sediment deposition, channel alternation and frequency of riffles. These results suggested that fish community structures were primary affected by the longitudinal environmental changes, and those were modified by habitat disturbance in the Gapyeong Stream, a gravel-bed stream.