• Title/Summary/Keyword: Resilience modulus

Search Result 20, Processing Time 0.028 seconds

A Study on the Manufacturing and Physical Properties of Conducting Rubber(I) - Magnetite System Conducting Rubber - (도전성(導電性)고무의 제조(製造) 및 물성(物性)에 관(關)한 연구(硏究)(I) -Magnetite 혼합계(混合系) 도전성(導電性)고무-)

  • Lee, Young-Man;Yun, Ju-Ho;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.30 no.1
    • /
    • pp.9-19
    • /
    • 1995
  • To make filler loaded conducting rubber which has the excellent electronical and physical properties, CR and NBR were mixed with magnetite$(Fe_3O_4)$. From the result of the study, vulcanization characteristics shows the upgrading curve as increase in filler concentration and CR has more torque than NBR. When elongation be higher, modulus comes to decreases. Tear strength gradually decrease after showing of the maximum point when is in the 100phr in all. Resilience is not good to cause the increase in filler concentration. In the electrical properties, conductivity becomes smaller when filler concentration is increased. The increase of voltage makes an conductivity grown, but the changed rate is weak. The influence of temperature hardly changes on increasing temperature. The morphology and the distribution for a conductivity filler through SEM were better, the more filler concentration increase, the shorter the particle interval is.

  • PDF

Study on the Properties of Flexible Polyurethane Foam at the Aging Condition (연질 폴리우레탄 폼의 노화 특성 연구)

  • Kim, Chang-Bum;Kim, Sangbum
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.123-127
    • /
    • 2012
  • In order to establish the cause of the deformation of polyurethane foam, compression set was measured according to the aging temperature and time. FT-IR, TGA, DSC and DMA were used for investigating the cause of deformation of aged PUF. The results of FT-IR and TGA reveals that no structure change occurred during deformation of PUF. Resilience of aged PUF was reduced by the increase of reduction ratio in storage modulus over the glass transition temperature of hard segment.

Empirical study of alginate impression materials by customized proportioning system

  • Kurtulus, Karani;Tufekci, Kenan
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.372-379
    • /
    • 2016
  • PURPOSE. Alginate mixers available in the market do not have the automatic proportioning unit. In this study, an automatic proportioning unit for the alginate mixer and controller software were designed and produced for a new automatic proportioning unit. With this device, it was ensured that proportioning operation could arrange weight-based alginate impression materials. MATERIALS AND METHODS. The variation of coefficient in the tested groups was compared with the manual proportioning. Compression tension and tear tests were conducted to determine the mechanical properties of alginate impression materials. The experimental data were statistically analyzed using one way ANOVA and Tukey test at the 0.05 level of significance. RESULTS. No statistically significant differences in modulus of elastisity (P>0.3), tensional/compresional strength (P>0.3), resilience (P>0.2), strain in failure (P>0.4), and tear energy (P>0.7) of alginate impression materials were seen. However, a decrease in the standard deviation of tested groups was observed when the customized machine was used. To verify the efficiency of the system, powder and powder/water mixing were weighed and significant decrease was observed. CONCLUSION. It was possible to obtain more mechanically stable alginate impression materials by using the custom-made proportioning unit.

A Study on the Manufacturing and Physical Properties of Conducting Rubber (II) -Barium ferrite System Conducting Rubber- (전도성(導電性)고무의 제조(製造) 및 물성(物性)에 관한(關)한 연구(硏究) (II) -Barium Ferrite 혼합계(混合系) 도전성(導電性)고무-)

  • Lee, Young-Man;Yun, Ju-Ho;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.218-228
    • /
    • 1995
  • To make filler loaded conducting rubber which has excellent electronical and physical properties, CR and NBR were mixed with barium ferrite(BaO.6Fe2O3). From the result of this study, vulcanization characteristics shows that curve is upgraded as the filler concentration increases and CR has higher torque than NBR. In physical properties, elongation being higher, modulus comes to decrease. Tear strength gradually decrease after showing the maximum point when is in the 100phr in CR. Resilience is not good to cause the increase in filler concentration. In electrical properties, conductivity becomes low when filler concentration increase. The increase of voltage makes a conductivity grown, but the rate change is weak. The influence of temperature hardly changes on increasing temperature. The morphology and the dispersion of a conductivity filler in vulcanizates through SEM were good. The more filler concentration increases, the shorter the particle interval is.

  • PDF

Comparison of Short-term Mechanical Characteristics of Fine-grained Soils Treated with Lime Kiln Dust and Lime (석회노분과 석회로 처리된 세립토의 단기적 역학특성 비교)

  • 김대현;사공명;이용희
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.75-83
    • /
    • 2004
  • The Indiana Department of Transportation (INDOT) has permitted the use of Lime Kiln Dust (LKD) as a low-cost construction material in creating a workable platform for soil modification (not for soil stabilization) since the early 1990s on selected projects. However, the enhanced strength of soils with LKD has not been accounted for in the subgrade stability calculations in the design process. This study was initiated to evaluate how the lime kiln dust is a comparable material to hydrated lime. A series of laboratory tests were performed to assess the mechanical benefits of lime kiln dust in combination with various predominant fine grained soils encountered in the State of Indiana, such as A-4, A-6 and A-7-6. In the course of this study, several tests such as the Atterberg limits, standard Proctor, unconfined compression, CBR, volume stability, and resilient modulus were performed. As a result, mixtures of fine grained soils with 5% lime or 5% LKD substantially improve unconfined compressive strength up to 60% - 400%. CBR values for treated soils are in the range of 25 to 70 while those for untreated soils range from 3 to 18. In general, significant increase in resilient moduli of the soils treated with lime and LKD was observed. This indicates that lime kiln dust may be a viable, cost effective alternative to hydrated lime in enhancing the strength of fine grained soils.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

Application of Ultrasonic Nano Crystal Surface Modification into Nitinol Stent Wire to Improve Mechanical Characteristics (나이티놀 스텐트 와이어의 기계적 특성 향상을 위한 초음파 나노표면 개질 처리에 대한 연구)

  • Kim, Sang-Ho;Suh, Tae-Suk;Lee, Chang-Soon;Park, In-Gyu;Cho, In-Sik;Pyoun, Young-Shik;Kim, Seong-Hyeon
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.80-87
    • /
    • 2009
  • Phase transformation, superelastic characteristics and variation of surface residual stress were studied for Nitinol shape memory alloy through application of UNSM technology, and life extension methods of stent were also studied by using elastic resilience and corrosion resistance. Nitinol wire of ${\phi}1.778$ mm showed similar surface roughness before and after UNSM treatment, but drawing traces and micro defects were all removed by UNSM treatment. It also changed the surface residual stress from tensile to compressive values, and XRD result showed less intensive austenite peak and clear martensite and additional R-phase peaks after UNSM treatment. Fatigue resistance could be greatly improved through removal of surface defects and rearrangement of surface residual stress from tensile to compressive state, and development of surface modification system to improve not only bio-compatability but also resistance to corrosion and wear will make it possible to develop vascular stent which can be used for circulating system diseases which run first cause of death of recent Koreans.

  • PDF

Mechanical properties of nickel titanium and steel alloys under stress-strain test

  • GRAVINA, Marco A;QUINTAO, Catia A;KOO, Daniel;ELIAS, Carlos N
    • The korean journal of orthodontics
    • /
    • v.33 no.6 s.101
    • /
    • pp.465-474
    • /
    • 2003
  • The great variety of commercial brands of orthodontic wires available on the market, stimulated by the so called superior wires (nickel titanium with shape memory effect and superelastic nickel titanium), makes the professional choice for a suitable and less expensive material difficult. The in vitro study of the mechanical properties of the orthodontic wires acts as an auxiliary tool for the professional. In this paper, a comparative study of mechanical properties was made, using stress strain tests for 4 types of orthodontic wires (conventional stainless steel, multistranded steel, superelastic nickel titanium and thermoactivated nickel titanium) separated into 5 groups. A series of 6 tests were tested for each group of wires. Initially, each group was tested 3 times until the wires broke. Furthermore, 3 more tests for each group were performed, stretching the wires under standardized activation loads, for a reliable comparison of their mechanical properties, during loading and unloading. 1 tests were applied to check differences among the groups. In vitro, the results suggest that regarding the mechanical properties supposedly desirable for physiological teeth movement, such as resilience, elasticity modulus, strength liberated during unloading, and the way that strength is liberated, thermoactivated nickel titanium wires, acting under mouth temperature, seems to be a good choice, fellowed by superelastic nickel titanium, multistranded stainless steel, and conventional stainless sleet. Superelasticity was demonstrated for superelastic nickel titanium wires. When at $37^{\circ}C$, thermoactivated nickel titanium wires showed shape memory effect, showing that temperature is important for enhancing the mechanical properties.

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.

The Effect of Moisture Content on the Compressive Properties of Korean Corn Kernel (함수율(含水率)이 옥수수립(粒)의 압축특성(壓縮特性)에 미치는 영향(影響))

  • Lee, Han Man;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.113-122
    • /
    • 1986
  • In order to promote mechanization of corn harvesting in Korea, this study was conducted to find out the effect of moisture content on compressive properties such as force, deformation, energy and modulus of stiffness to the bioyield and the rupture point for Korean corn kernel. In this study, the loading positions of corn were flat, edge, longitude and the moisture contents were about 13, 17, 21, 25% in wet basis. The compression test was carreied out with flat plate by use of dynamic straingage for three varieties of Korean corn under quasi-static force when the loading rate was 1.125mm/min. The results of this study are summarized as follows; 1. When the moisture content of corn ranged from 12.5 to 24.5 percent, at flat position, the bioyied force was in the range of 13.63-26.73 kg and the maximum compressive strength was in the range of 21.55-47.65kg. Their values were reached minimum at about 17% and maximum at about 21% moisture content. The bioyield force was in the range of 13.58-6.70kg at edge position and the maximum compressive strength which was 16.42 to 7.82kg at edge position was lower than that which was 18.55-9.05kg at longitudinal position. 2. Deformation of corn varied from 0.43 to 1.37 mm at bioyield point and from 0.70 to 2.66mm at rupture point between 12.5 to 24.5% moisture content. As the moisture content increased, deformation was increased. 3. The moduli of resilience and toughness of corn ranged from 2.60 to 8.57kg. mm and from 6.41 to 34.36kg. mm when the moisture content ranged from 12.5 to 24.5 percent, respectively. As the moisture content increased, the modulus of toughness was increased at edge position and decreased at longitudinal position. And their values were equal each other at 22-23% moisture content. 4. The modulus of stiffness was decreased with increase in the moisture content. Its values ranged from 32.07 to 5.86 kg/mm at edge position and from 42.12 to 18.68kg/mm at flat position, respectively. Also, the values of Suweon 19 were higher than those of Buyeo. 5. It was considered that the compressive properties of corn at flat position were more important on the design data for corn harvesting and processing machinery than those of edge or longitudinal position. Also, grinding energy would be minimized when a corn was processed between about 12.5 to 17% moisture content and corn damage would be reduced when a corn was handled between about 19 to 24% moisture content in wet basis.

  • PDF