• Title/Summary/Keyword: Residues

Search Result 3,428, Processing Time 0.046 seconds

NMR Study on the Internal Dynamics of Ketosteroid Isomerase

  • Lee, Hee-Cheon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.26-26
    • /
    • 2003
  • The backbone dynamics of ketosteroid isomerase, a homodimeric enzyme with 125 amino acid residues per subunit, has been studied in the presence/absence of a steroid ligand and 5% trifluoroethanol (TFE) by $^{15}$ M relaxation measurements. The relaxation data were analyzed using the model-free formalism to extract the model-free parameters (S$^2$, $\tau$$_{e}$, and R$_{ex}$ ). The results show that a large number of the residues, particularly those involved in the dimer interaction, exhibit reduced order parameters (S$^2$) in the steroid-bound enzyme, indicating the increased high-frequency (pico- to nanosecond) motions in the interface region upon ligand binding. The results also show that that the presence of 5 % TFE in free enzyme causes little change or slight increase in the order parameters for a number of residues in the dimer interface region. However, the majority of the residues in free enzyme exhibit reduced order parameters in the presence of 5 % TFE, indicating that the increase in entropy is partially responsible for the increased stability of KSI by 5% TFE.E.E.

  • PDF

SNARE Assembly and Membrane Fusion: A Paramagnetic Electron Magnetic Resonance Study

  • Kweon, Dae-Hyuk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.32-32
    • /
    • 2003
  • In the neuron, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) assembly plays a central role in driving membrane fusion, a required process for neurotransmitter release. In the cytoplasm, vesicular SNARE VAMP2 (vesicle-associated membrane protein 2) engages with two plasma membrane SNAREs syntaxin 1A and SNAP-25 (synaptosome-associated protein of 25 kDa) to form the core complex that bridges two membranes. While various factors regulate SNARE assembly, the membrane also plays the regulatory role by trapping VAMP2 in the membrane. The fluorescence and EPR analyses revealed that the insertion of seven C-terminal core-forming residues into the membrane controls complex formation of the entire core region, even though preceding 54 core-forming residues are fully exposed and freely moving. When two interfacial Trp residues in this region were replaced with hydrophilic serine residues, the mutation supported rapid complex formation.

  • PDF

Genetic analysis of P22 tail spike protein folding

  • ;King, Janathan
    • The Microorganisms and Industry
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 1986
  • We have adopted a genetic approach to identifying those residues and local sequences in a polypeptide chain which play an important role on the folding pathway. Our approach has been to isolate and characterize mutants which specifically alter the folding and subunit association pathway of a polypeptide chain, without altering the native protein. Such mutants distinguish residues involved in the kinetic control of conformation from residues involved in the stability and activity of the native protein. This approach is complementary to the efforts to characterize mutations which alter the stability of the mature protein(6,7,8). It is likely that many residues will have roles in both aspects of the functioning of the polypeptide chain. We thought it likely, however, that at least with large proteins, these aspects might be segregated in different local sequences.

  • PDF

Characterization of Biometry and Chemical and Morphological Properties of Fibers from Bagasse, Corn, Sunflower, Rice, and Rapeseed Residues in Iran

  • Kiaei, Majid;Samariha, Ahmad;Kasmani, Jafar Ebrahimpour
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • The biometry, morphological properties and chemical composition of bagasse, corn, sunflower, rice, and rapeseed residues plants were analyzed. The results revealed differences in biometry properties and chemical composition of the different types of agricultural resides investigated. The greatest proportion of fiber length (1.32 mm) and cellulose (55.56%) was found in residues of bagasse plants, with a low ash (1.78%) and lignin (20.5%). The lignin of all types of agricultural resides was less than hardwood and softwood. In addition, the rice and rapeseed residues plants had highest amount of ash and extractive component. The slenderness and flexibility ratios of the all types of agricultural resides fibers were similar to some of hardwood and softwood species.

Establishment of Analytical Method for Dichlorprop Residues, a Plant Growth Regulator in Agricultural Commodities Using GC/ECD (GC/ECD를 이용한 농산물 중 생장조정제 dichlorprop 잔류 분석법 확립)

  • Lee, Sang-Mok;Kim, Jae-Young;Kim, Tae-Hoon;Lee, Han-Jin;Chang, Moon-Ik;Kim, Hee-Jeong;Cho, Yoon-Jae;Choi, Si-Won;Kim, Myung-Ae;Kim, MeeKyung;Rhee, Gyu-Seek;Lee, Sang-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.214-223
    • /
    • 2013
  • BACKGROUND: This study focused on the development of an analytical method about dichlorprop (DCPP; 2-(2,4-dichlorophenoxy)propionic acid) which is a plant growth regulator, a synthetic auxin for agricultural commodities. DCPP prevents falling of fruits during their growth periods. However, the overdose of DCPP caused the unwanted maturing time and reduce the safe storage period. If we take fruits with exceeding maximum residue limits, it could be harmful. Therefore, this study presented the analytical method of DCPP in agricultural commodities for the nation-wide pesticide residues monitoring program of the Ministry of Food and Drug Safety. METHODS AND RESULTS: We adopted the analytical method for DCPP in agricultural commodities by gas chromatograph in cooperated with Electron Capture Detector(ECD). Sample extraction and purification by ion-associated partition method were applied, then quantitation was done by GC/ECD with DB-17, a moderate polarity column under the temperature-rising condition with nitrogen as a carrier gas and split-less mode. Standard calibration curve presented linearity with the correlation coefficient ($r^2$) > 0.9998, analysed from 0.1 to 2.0 mg/L concentration. Limit of quantitation in agricultural commodities represents 0.05 mg/kg, and average recoveries ranged from 78.8 to 102.2%. The repeatability of measurements expressed as coefficient of variation (CV %) was less than 9.5% in 0.05, 0.10, and 0.50 mg/kg. CONCLUSION(S): Our newly improved analytical method for DCPP residues in agricultural commodities was applicable to the nation-wide pesticide residues monitoring program with the acceptable level of sensitivity, repeatability and reproducibility.

Establishment of Analytical Method for Residues of Ethychlozate, a Plant Growth Regulator, in Brown Rice, Mandarin, Pepper, Potato, and Soybean Using HPLC/FLD

  • Kim, Jae-Young;Lee, Jin Hwan;Lee, Sang-Mok;Chae, Young-Sik;Rhee, Gyu-Seek;Chang, Moon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.111-119
    • /
    • 2015
  • BACKGROUND: Ethychlozate (ECZ) is a plant growth regulator of synthetic auxin for agricultural commodities (ACs). Accurate and sensitive method to determine ECZ in diverse ACs on global official purpose is required to legal residue regulation. As the current official method is confined to the limited type of crops with poor validation, this study was conducted to improve and extend the ECZ method using high-performance liquid chromatography (HPLC) in all the registered crops with method verification. METHODS AND RESULTS: ECZ and its acidic metabolite (ECZA) were both extracted from acidified samples with acetone and briefly purified by dichloromethane partition. ECZ was hydrolyzed to form ECZA and the combined ECZA was finally purified by ion-associated partition including hexane-washing. The instrumental quantitation was performed using HPLC/ FLD under ion-suppression of ECZA with no interference by sample co-extractives. The average recoveries of intra- and inter-day experiment ranged from 82.0 to 105.2% and 81.7 to 102.8%, respectively. The repeatability and reproducibility for intra- and inter-day measurements expressed as a relative standard deviation was less than 8.7% and 7.4%, respectively. CONCLUSION: Established analytical method for ECZ residue in ACs was applicable to the nation-wide pesticide residues monitoring program with the acceptable level of sensitivity, repeatability and reproducibility.

A Survey on Pesticide Residues of Commercial Agricultural Products in Gwangju Area (광주지역 유통 농산물의 농약 잔류실태 조사연구)

  • Kim Jongpil;Gang Gyunglee;Yang Yongshik;Lee Hyanghee;Chung Jaekeun;Kim Eunsun
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.3
    • /
    • pp.165-174
    • /
    • 2005
  • This survey was conducted to monitor the current status of pesticide residues in agricultural products collected in wholesale markets and big retailers in Gwangju, in 2004. A total of 751 samples was analyzed by multiresidue method. Vegetables and fruits accounted for the largest proportion of the commodities analyzed and those two commodity groups comprised 604 $(80\%)\;and\;83\;(11\%)$ of the total number of 751 samples. Of these 751 samples, 112 samples $(14.9\%)$ had pesticide residues and 29 samples $(3.9\%)$ had violative residues. The detection rate was the highest $25\%$ in January and the lowest $9.5\%$ in June. The violation rate was the highest $7.0\%$ in March and the lowest $0\%$ in April. The violation rate in wholesale products was higher than that in big retailer products, $5.8\%$ verses $3.5\%$. And of 112 samples with pesticide residues, the agricultural product in which the pesticide residues were the most flequently detected was perilla leaf $(17.9\%)$ followed by korean lettuce $(16.1\%)$, spinach $(8.0\%)$ and korean cabbage $(5.4\%)$ and among 112 samples, 22 samples $(20\%)$ had more than one pesticide. Procymidone $(20.3\%)$, endosulfan $(18.2\%)$, dimethomorph $(13.3\%)$, chlorpyrifos $(7.7\%)$ and azoxystrobin $(6.3\%)$ were the most frequently found in agricultural product analyzed.

Effect of Organic Residue Incorporation on Salt Activity in Greenhouse Soil (시설재배지 토양에서 유기자재 투입이 염류활성도에 미치는 영향)

  • Lee, Seul-Bi;Lee, Chang-Hoon;Hong, Chang-Oh;Kim, Sang-Yoon;Lee, Yong-Bok;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.397-402
    • /
    • 2009
  • In Korea, salt stress is one of the major problems limiting crop production and eco-environmental quality in greenhouse soil. The objective of this study was to evaluate the effectiveness of organic residues (Chinese milk vetch, maize stalk, rice straw, and rye straw) for reducing salt activity in greenhouse soil. Organic residues was incorporated with salt-accumulated soil (EC, 3.0 dS $m^{-1}$) at the rate of 5% (wt $wt^{-1}$) and the changes of electrical conductivity (EC) was determined weekly for 8 weeks under incubation condition at $30^{\circ}C$. The EC, microbial biomass carbon (MBC), and water soluble ions in soil was strongly affected by C/N ratio of organic residues. After 8 weeks incubation, the concentration of water soluble $NO_3{^-},\;Ca^{2+}$, and $Mg^{2+}$ was significantly decreased in organic residues having high C/N ratio (maize stalk, rice straw, and rye straw) incorporated soil compared to organic residues having lower C/N ratio (Chinese milk vetch) incorporated soil. The EC value in Chinese milk vetch incorporated soil was higher than control treatment. In contrast, maize stalk, rice straw, and rye straw amended soil was highly decreased the EC value compared to control and Chinese milk vetch applied soil after 4 weeks incubation. Our results indicated that incorporation of organic residues having high C/N ratio (>30) could reduce salt activity resulting from reducing concentration of water soluble ions.

Chemical Modification of Brain Glutamate Dehydrogenase Isoproteins with Phenylglyoxal

  • Ahn, Jee-Yin;Cho, Eun-Hee;Lee, Kil-Soo;Choi, Soo-Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.515-520
    • /
    • 1999
  • Incubation of two types of glutamate dehydrogenase isoproteins from bovine brain with the arginine-specific dicarbonyl reagent phenylglyoxal resulted in a biphasic loss of enzyme activity. Reaction of the glutamate dehydrogenase isoproteins with phenylglyoxal caused a rapid loss of 53~62% of the enzyme activities and modification of two residues of arginine per enzyme subunit. Prolonged incubation of the glutamate dehydrogenase isoproteins with phenylglyoxal resulted in the modification of an additional four residues of arginine per enzyme subunit without further loss of the residual activities. Partial protection against inactivation was provided by the coenzyme NADH or substrate 2-oxoglutarate. The most marked decrease in the rate of inactivation was observed by the combined addition of NADH and 2-oxoglutarate, suggesting that the first two modified arginine residues are in the vicinity of the catalytic site. However, inactivation of the glutamate dehydrogenase isoproteins by phenylglyoxal appears to be partial with approximately 40% activity remained after an extended reaction time with excess reagent, suggesting that the modified arginine residues may not be directly involved in catalysis. The lack of complete protection by substrates also suggest the possibility that the modified arginine residues are not directly involved at the active site, and the partial loss of activity by the modification of arginine residues may be due to a conformational change. There were no significant differences between the two glutamate dehydrogenase isoproteins in sensitivities to inactivation by phenylglyoxal, indicating that the microenvironmental structures of the glutamate dehydrogenase isoproteins are very similar to each other.

  • PDF

Application of ELISA for the Detection of Penicillin Antibiotic Residues in Live Animal

  • Lee, H.J.;Lee, M.H.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1604-1608
    • /
    • 2000
  • Penicillin antibiotics such as penicillin G, ampicillin and amoxicillin have been widely used in the pig industry to control salmonellosis, bacterial pneumonia, and urinary tract infections. Extensive use of antibiotics in veterinary clinics has resulted in tissue residues and bacterial resistance. To prevent unwanted drug residues entering the human food chain, extensive control measures have been established by both government authorities and industries. The demands for reliable, simple, sensitive, rapid and low-cost methods for residue analysis of foods are increasing. In this study, we established a rapid prediction test for the detection of pigs with unacceptable tissue residues of penicillins. The recommended therapeutic doses of three penicillins, penillin G (withdrawal time, 7 days), ampicillin (withdrawal time, 7 days) and amoxicillin (withdrawal time, 14 days), were administered to three groups of 20 pigs each. Blood was sampled before drug administration and during the withdrawal period. The concentration of penicillins in plasma, determined by a semi-quantitative ELISA, were compared to that of internal standard, 4 ppb, which corresponded to the Maximum Residue Limit in milk. The absorbance ratio of internal standard to sample (B/Bs) was employed as an index to determine whether drug residues in pig tissues were negative or positive. That is, a B/Bs ratio less than 1 was considered residue positive, and larger than 1 negative. All 60 plasma samples from pigs were negative to three penicillins at pretreatment. Penicillin G could be detected in the plasma of the treated pigs until day 4 post-treatment and ampicillin until day 2, whereas amoxicillin could be detected until day 10 of its withdrawal period. The present study showed that the semi-quantitative ELISA could be easily adapted to detect residues of penicillin antibiotics (penicillin G, ampicillin and amoxicillin) in live pigs.