• Title/Summary/Keyword: Residual stress measurement

Search Result 232, Processing Time 0.027 seconds

A Study on the Adhesion Strength and Residual Stress Measurement of Plasma Sprayed Cr$_3$C$_2$-NiCr Coating (크롬탄화물 용사피막의 접착력 및 잔류응력측정에 관한 연구)

  • ;;Kim, E. H.;Kwun, S. I.
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • The plasma sprayed Cr$_{2}$C$_{2}$-NiCr coatings are widely used as wear-resistant and corrosion-resistant materials. The mechanical properties of the plasma sprayed Cr$_{2}$C$_{2}$-NiCr coatings were examined in this study. The distribution of the residual stress with the coating thickness was also examined by X-ray diffraction method. The pore in the coatings could be classified into two types ; one is the intrinsic pore originated from the spraying powder, the other is the extrinsic pore formed during spraying. During the tensile adhesion test, the fracture occurred at the interface of top coat and substrate or top coat and bond coat depending on the existence of bond coat. It was found that the compressive residual stress near the interface decreased with the increase of the top coat thickness. The tensile adhesion strength of the coating without bond coat was higher than that with bond coat, because the coating with bond coat has higher horizontal crack density near the interface between bond coat and top coat.

  • PDF

Investigation into a Chemical Cracking and the Measurement of Stress in a Polycarbonate Specimen through Deformation Jig (변형지그를 이용한 폴리카보네이트 시편의 케미컬 크랙킹 및 응력측정에 관한 연구)

  • Yoo, Seo Jeong;Hong, Hyoung Sik;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.645-649
    • /
    • 2014
  • The causes of residual stress in an injection molded part are high temperature variation and shear stress during molding process. Chemical cracking test is one of the methods of measuring residual stress and cracks are developed according to the degree of residual stress. In this study, the relationship between chemical cracking and exerted stress have been investigated. Deformation jig was designed and used to give a stress through deformation in a specimen. Specimens were molded by a hot press using polycarbonate (PC) and annealed to remove residual stresses in the specimens. Specimens were fixed in the deformation jig and immersed into the solvent to create cracks in the specimens. Solvents were prepared by using tetrahydrofuran and methyl alcohol. As stress accordance with the deformation in the specimen increased, the frequency and density of cracks in the specimen also increased. The results of this study can be used for the measurement of residual stress quantitatively in an injection molded PC product using a chemical cracking method.

Residual Stress Measurement of Flat Welded Specimen by Electronic Speckle Pattern Interferometry (전자처리스페클패턴 간섭법을 이용한 평판 용접시험편의 잔류응력 측정)

  • Chang, Ho-Seob;Kim, Dong-Soo;Jung, Hyun-Chul;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • The size and distribution of welding residual stress and welding deformation in welding structures have an effect on various sorts of damage like brittle failure, fatigue failure and stress corrosion cracking. So, research for this problem is necessary continuously. In this study, non-destructive technique using laser electronic speckle pattern interferometry, plate of welding specimen according to the external load on the entire behavior of residual stress are presented measurement techniques. Once, welding specimen force tensile loading, using electronic speckle pattern interferometry is measured. welding specimen of base metal and weld zone measure strain from measured result, this using measure elastic modulus. In this study, electronic speckle pattern interferometry use weld zone and base metal parts of the strain differences using were presented in residual stress calculated value, This residual stress value were calculated by numerical calculation. Consequently, weld zone of modulus high approximately 3.7 fold beside base metal and this measured approximately 8.46 MPa.

Prediction and Measurement of Residual Stresses in Injection Molded Parts

  • Kwon, Young-Il;Kang, Tae-Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 2001
  • Residual stresses were predicted by a flow analysis in the mold cavity and residual stress distribution in the injection molded product was measured. Flow field was analyzed by the hybrid FEM/FDM method, using the Hele Shaw approximation. The Modified Cross model was used to determine the dependence of the viscosity on the temperature and the shear rate. The specific volume of the polymer melt which varies with the pressure and temperature fields was calculated by the Tait\`s state equation. Flow analysis results such as pressure, temperature, and the location of the liquid-solid interface were used as the input of the stress analysis. In order to calculate more accurate gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise direction was predicted in two cases, the free quenching, under the assumption that the shrinkage of the injection molded product occurs within the mold cavity and that the solid polymer is elastic. Effects of the initial flow rate, packing pressure, and mold temperature on the residual stress distribution was discussed. Experimental results were also obtained by the layer removal method for molded polypropylene.

  • PDF

Residual stress measurements using neutron diffraction (중성자법에 의한 잔류응력 측정법)

  • Woo, Wanchuck;Kim, Dong-Kyu;An, Gyu-Baek
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.30-34
    • /
    • 2015
  • Residual stresses are inherently introduced into the engineering components during manufacturing including rolling, forging, bending and welding processes. Excessive residual stresses are known to be detrimental to the proper integrity and performance of components. Neutron diffraction has become a well-established technique for the determination of residual stresses in welds. The deep penetration capability of neutrons into most metallic materials makes neutron diffraction a powerful tool for the residual stress measurements through the thickness of the weld specimen. Furthermore, the unique volume-averaged bulk characteristic of the scattering beam and mapping capability in three dimensions is suitable for the engineering purpose. In this presentation, the neutron diffraction measurements of the residual stresses will be introduced and measurement results will highlighted in thick weld plates.

Characteristics of bending strength and residual stress distribution on high thermal cycle of ceramic and metal joint (세라믹/금속접합재의 고온 열사이클에 따른 잔류응력분포 및 굽힘강도 특성)

  • Park, Young-Chul;Hue, Sun-Chul;Boo, Myoung-Hwan;Kim, Hyun-Su;Kang, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1541-1550
    • /
    • 1997
  • Since the ceramic/metal joint material is made at a high temperature, the residual stress develops when it is cooled from bonding temperature to room temperature due to remarkable difference of thermal expansion coefficient between ceramic and metal. As residual stress at ceramic/metal joints influences the strength of joints, it is important to estimate residual stress quantitatively. In this study, it is attempted to estimate joint residual stress of Si$_3$N$_4$STS304 joints quantitatively and to compare the strength of joints. The difference of residual stress is measured when repeated thermal cycl is loaded, under the conditions of the practical use of the ceramic/metal joint. The residual stress increases at 1 cycle of thermal load but decreases in 3 cycles to 10 cycles of thermal load. And 4-point bending test is performed to examine the influence of residual stress on fracture strength. As a result, it is known that the stress of joint decreases as the number of thermal cycle increases.

Nondestructive Testing of Residual Stress on the Welded Part of Butt-welded A36 Plates Using Electronic Speckle Pattern Interferometry

  • Kim, Kyeongsuk;Jung, Hyunchul
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.259-267
    • /
    • 2016
  • Most manufacturing processes, including welding, create residual stresses. Residual stresses can reduce material strength and cause fractures. For estimating the reliability and aging of a welded structure, residual stresses should be evaluated as precisely as possible. Optical techniques such as holographic interferometry, electronic speckle pattern interferometry (ESPI), Moire interferometry, and shearography are noncontact means of measuring residual stresses. Among optical techniques, ESPI is typically used as a nondestructive measurement technique of in-plane displacement, such as stress and strain, and out-of-plane displacement, such as vibration and bending. In this study, ESPI was used to measure the residual stress on the welded part of butt-welded American Society for Testing and Materials (ASTM) A36 specimens with $CO_2$ welding. Four types of specimens, base metal specimen (BSP), tensile specimen including welded part (TSP), compression specimen including welded part (CSP), and annealed tensile specimen including welded part (ATSP), were tested. BSP was used to obtain the elastic modulus of a base metal. TSP and CSP were used to compare residual stresses under tensile and compressive loading conditions. ATSP was used to confirm the effect of heat treatment. Residual stresses on the welded parts of specimens were obtained from the phase map images obtained by ESPI. The results confirmed that residual stresses of welded parts can be measured by ESPI.

AJM을 이용한 HDM에 의한 잔류응력 계측에 관한 연구 1

  • 이택순
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.37-42
    • /
    • 1988
  • The Hole Drilling Method(HDM) is widely used to measure residual stresses in the welded structures. The purpose of this study is to evaluate the accuracy fo measuring residual stresses when drilling the hole by Air-abrasive Jet machine(AJM). Simulated residual stresses wre introduced by applying known stresses to steel bars. These known streses were then compared with measured stresses relaxed from hole drilling. the obtained results are summarized as follows; 1) It was possible to obtain well defined holes with the nozzle designed for this study. 2) If the hole shape is not cylindrical, critical may occur. 3) In the uniaxial strain field, the measurement error of the maximum principal stress was within .+-.10 percent. The orientation angle of the maximum principal stress was within 8.deg. from the given directioin. 4) meausrements were made varying hole depths. Little or no change of stresses occurs since holse were drilled more than the depth of the 0.6 times diameter. 5) The air-abrasive jet machining for drilling holse does not cause appreciable apparent stresses which si critical to measure residual stresses.

  • PDF

Compensation of the Error due to Hole Eccentricity of Hole-drilling Method in Uniaxile Residual Stress Field Using Neural Network (신경망 기법을 이용한 1축 잔류응력장에서 구멍뚫기법의 구멍편심 오차 보정)

  • Kim, Cheol;Yang, Won-Ho;Cho, Myoung-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2475-2482
    • /
    • 2002
  • The measurement of residual stresses by the hole-drilling method has been commonly used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, the error due to the hole eccentricity is compensated using the neural network. The neural network has trained training examples of normalized eccentricity, eccentric direction and direction of maximum stress at eccentric case using backpropagation learning process. The trained neural network could compensated the error of measured residual stress in experiments with hole eccentricity. The proposed neural network is very useful for compensation of the error due to hole eccentricity in hole-drilling method.

A Measurement of the Residual Stress and Young's Modulus of p+ Silicon (p+ 실리콘의 강성계수 및 잔류응력 측정)

  • Kim, Sang-Cheol;Jeong, Ok-Chan;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2524-2526
    • /
    • 1998
  • In this paper, the residual stress and young's modulus of the p+ thin film have been estimated by using the electrostatic resonators. The electrostatic plate resonator with four corrugated bridges and another with four flat ones have been fabricated. The deflection of the plate has been calculated under the induced tension and the residual stress and compared with the dynamic test results. When the young's modulus of the p+ silicon is 125 GPa. The estimated residual stresses of the flat and the corrugated bridges are about 15 MPa and less than 5 MPa, respectively. It has been confirmed that the corrugated structure releases the residual tensile stress resulted from the heavy boron diffusion process.

  • PDF