• 제목/요약/키워드: Residual pesticide

검색결과 343건 처리시간 0.029초

인삼 가공 중 잔류농약의 감소계수연구 ( I ) (Study on Reduction Factors of Residual Pesticides in Processing of Ginseng(I))

  • 임무혁;권광일;박건상;최동미;장문익;정지윤;이경진;윤원갑;홍무기;우건조
    • 농약과학회지
    • /
    • 제10권1호
    • /
    • pp.22-27
    • /
    • 2006
  • 인삼에 대한 합리적인 농약잔류허용기준 개정을 위한 과학적 자료인 인삼 가공단계별 농약 감소계수 산출을 위하여 본 연구를 실시하였다. 인삼 재배 시에 사용 등록된 농약 3종(azoxystrobin, fenhexamid, cyprodinil)을 인삼포에 직접 살포하여 수확한 수삼을 건삼과 인삼농축액으로 직접 제조하고 각 제품 중 농약 잔류량과 수분을 보정한 농약절대량으로 감소계수(dry basis)를 산출하였다. Azoxystrobin, fenhexamid, cyprodinil의 감소계수(dry basis)는 건삼에서 0.73, 0.96, 0.24 인삼농축액에서 3.23, 5.74, 1.20이였다. Fenhexamid를 제외한 나머지 농약들은 가공과정 중 분해되어 잔류량이 감소하였다.

전탕 전과 후의 중금속, 잔류농약 및 잔류이산화황의 농도변화 - 감기약을 중심으로 - (Concentration of Heavy Metals, Residual Pesticides and Sulfur Dioxide of before/after a Decoction)

  • 서창섭;황대선;이준경;하혜경;천진미;엄영란;장설;신현규
    • 대한본초학회지
    • /
    • 제23권4호
    • /
    • pp.51-58
    • /
    • 2008
  • Objectives: To compare the contents of heavy metals, residual pesticides and sulfur dioxide before/after a decoction. Methods: The heavy metal contents before/after a decoction were measured by Inductively Coupled Plasma Atomic Emission Spectrometer(ICP-AES) and mercury analyzer. In order to analyze pesticides in 5 samples we used simultaneous multi-residue analysis of pesticides by GC/ECD, which was followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide($SO_2$) were performed by Monier-Williams distillation method. Results: 1. The mean values of heavy metal contents(mg/kg) for the samples were as follows: Galgeun-tang(before decoction-Pb; 0.793, Cd; 0.133, As; 0.016 and Hg; 0.005, after decoction-Pb; 0.033, Cd; 0.004, As; 0.002 and Hg; not detected), Gumiganghwal-tang(before decoction-Pb; 0.934, Cd; 0.197, As; 0.046 and Hg; 0.006, after decoction-Pb; 0.062, Cd; 0.007, As; 0.004 and Hg; 0.0001), Sosiho-tang(before decoction-Pb; 0.891, Cd; 0.134, As; 0.091 and Hg; 0.014, after decoction-Pb; 0.036, Cd; 0.002, As; 0.004 and Hg; not detected), Ojuck-san(before decoction-Pb; 0.907, Cd; 0.136, As; 0.084 and Hg; 0.007, after decoction-Pb; 0.074, Cd; 0.007, As; 0.011 and Hg; 0.0005) and Samsoeum(before decoction-Pb; 1.234, Cd; 0.154, As; 0.016 and Hg; 0.007, after decoction-Pb; 0.094, Cd; 0.006, As; 0.002 and Hg; 0.001). 2. Contents(mg/kg) of residual pesticides before/after a decoction in all samples were not detected. 3. Contents(mg/kg) of sulfur dioxide($SO_2$) before a decoction in Galgeun-tang, Gumiganghwal-tang, Sosiho-tang, Ojuck-san and Samsoeum exhibited 1.2, 3.4, 11.1, 12.0 and 5.7, respectively. However, contents of sulfur dioxide after a decoction in all samples were not detected. Conclusions: These results will be used to establish a criterion of heavy metals, residual pesticides and sulfur dioxide.

  • PDF

전탕 전과 후의 중금속, 잔류농약 및 잔류이산화황의 농도변화 - 십전대보탕 구성처방을 중심으로 - (Concentration of Heavy Metals, Residual Pesticides and Sulfur Dioxide before/after a Decoction - In Prescription consist of Sipjeondaebo-tang -)

  • 서창섭;황대선;이준경;하혜경;천진미;엄영란;장설;신현구
    • 대한한의학회지
    • /
    • 제30권4호
    • /
    • pp.108-117
    • /
    • 2009
  • Objective: To compare the contents of heavy metals, residual pesticides and sulfur dioxide before/after a decoction. Methods: The heavy metal contents before/after a decoction were measured by inductively-coupled plasma atomic emission spectrometer (ICP-AES) and mercury analyzer. In order to analyze pesticides in 5 samples we used simultaneous multi-residue analysis of pesticides by GC/ECD, which was followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide ($SO_2$) were performed by Monier-Williams distillation method. Results: 1. The mean values of heavy metal contents (mg/kg) for the samples were as follows: Sipjeondaebo-tang (before decoction - Pb; 1.163, Cd; 0.257, As; 0.080 and Hg; 0.016, after decoction - Pb; 0.059, Cd; 0.007, As; 0.006 and Hg; 0.0003), Palmul-tang (before decoction - Pb; 1.181, Cd; 0.242, As; 0.152 and Hg; 0.014, after decoction - Pb; 0.067, Cd; 0.008, As; 0.008 and Hg; 0.0003), Sagunja-tang (before decoction - Pb; 1.285, Cd; 0.283, As; 0.063 and Hg; 0.012, after decoction - Pb; 0.047, Cd; 0.009, As; 0.004 and Hg; not detected) and Samul-tang (before decoction - Pb; 1.025, Cd; 0.169, As; 0.099 and Hg; 0.013, after decoction - Pb; 0.065, Cd; 0.007, As; 0.010 and Hg; 0.001). 2. Contents (mg/kg) of residual pesticides before/after a decoction were not detected in any samples. 3. Contents (mg/kg) of sulfur dioxide ($SO_2$) before a decoction in Sipjeondaebo-tang, Palmul-tang, Sagunja-tang and Samul-tang exhibited 5.0, 6.0, 14.0 and 6.9, respectively. However, contents of sulfur dioxide after a decoction were not detected in any samples. Conclusion: These results will be used to establish a criterion for heavy metals, residual pesticides and sulfur dioxide.

  • PDF

중금속, 잔류농약 및 잔류이산화황의 전탕 전, 후의 농도 변화 - 다빈도 태음인 사상처방을 중심으로 - (Concentration of Heavy Metals, Residual Pesticides and Sulfur Dioxide of before/after Decoction)

  • 서창섭;황대선;이준경;하혜경;천진미;엄영란;장설;김종열;이시우;신현규
    • 사상체질의학회지
    • /
    • 제21권1호
    • /
    • pp.237-246
    • /
    • 2009
  • 1. Objectives To compare the contents of heavy metals, residual pesticides and sulfur dioxide before/after decoction. 2. Methods The heavy metal contents before/after decoction were measured by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and mercury analyzer. In order to analyze pesticides in 3 samples we used simultaneous multi-residue analysis of pesticides by GC/ECD, followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide (SO2) were performed by Monier-Williams distillation method. 3. Results 1) The mean values of heavy metal contents (mg/kg) for the samples were as follows: Yuldahanso-tang (before decoction - Pb; 1.85, Cd; 0.148, As; 0.042 and Hg; 0.003, after decoction - Pb; 0.096, Cd; 0.006, As; 0.006 and Hg; 0.002), Chongsimyonja-tang (before decoction - Pb; 1.193, Cd; 0.094, As; 0.084 and Hg; 0.008, after decoction - Pb; 0.053, Cd; 0.007, As; 0.011 and Hg; not detected) and Taeyeumjowee-tang (before decoction - Pb; 0.878, Cd; 0.078, As; 0.302 and Hg; 0.004, after decoction - Pb; 0.079, Cd; 0.005, As; 0.006 and Hg; not dectcted). 2) Contents (mg/kg) of residual pesticides before/after decoction in all samples were not detected. 3) Contents (mg/kg) of sulfur dioxide (SO2) before decoction in Yuldahanso-tang, Chongsimyonja-tang and Taeyeumjowee-tang exhibited 6.1, 37.8, 31.5 and 19.7, respectively. However, contents of sulfur dioxide after decoction in all samples were not detected. 4. Conclusion These results will be used to establish a criterion of heavy metals, residual pesticides and sulfur dioxide.

  • PDF

수질 및 토양 중 Endosulfan 제거효과에 관한 연구 (A study on removal effect of Endosulfan in soil and aquatic system)

  • 안중혁;이석종;이완;김준범;이광춘;권영두;전충;박광하
    • 분석과학
    • /
    • 제19권2호
    • /
    • pp.155-162
    • /
    • 2006
  • 본 연구에서는 잔류농약을 효과적으로 제거하는 방법을 토양 및 수용액상에서 연구하였다. 이를 위해 표준물질은 유기염소계 ${\alpha}$-endosulfan, ${\beta}$-endosulfan을 사용하였다. 분석방법은 각각 채취한 시료를 전처리하여 Ultra II[$(30m{\times}0.25mm(ID){\times}0.25{\mu}m$] 컬럼을 장착한 GC-${\mu}$-electron capture detector(${\mu}$-ECD)로 분석하였다. 토양 중 잔류농약의 회수율은 96-100%로 나타났다. 토양에 농약분해제를 살포하여 시간별 ${\alpha}$-endosulfan, ${\beta}$-endosulfan의 변화량을 분석한 결과 73, 61% 감소하였다. 토양시료에 농약분해제를 첨가하고, 수분의 양을 10 mL에서 100 mL로 증가 시키면서, 잔류농약의 변화량을 측정하였다. 그 결과, ${\alpha}$-endosulfan은 45%에서 85 %로, ${\beta}$-endosulfan은 44%에서 88%로 제거되었다. 마지막으로, 수용액상에서도 시간별 endosulfan의 제거율 실험을 하였다. 실험 결과 30분 내에서 ${\alpha}$-endosulfan은 99%, ${\beta}$-endosulfan은 98%가 분해 제거되었다. 이와 같은 현상은 농약분해제에 많은 유기산염과 강알칼리 성분들이 알칼리 가수분해를 일으킨 것으로 추정할 수 있다.

경상북도 내 유통 농산물 중의 잔류농약 동향 (2004~2008년) (Tendency of Residual Pesticides in Commercial Agricultural Products in Gyeongsangbuk-Do Area (the year 2004~2008))

  • 양승태;손진창;정광현;이창일;김미정;박희숙;차춘근
    • 한국식품위생안전성학회지
    • /
    • 제24권4호
    • /
    • pp.338-347
    • /
    • 2009
  • The content of residual pesticides in commercial agricultural products in Gyeongsangbuk-Do area was investigated for 5 years extending the year 2004 through 2008. The detection rates of residual pesticides in agricultural products by year were similar in range of 11.6~16.4%. But the violation rates showed lower values in the last years from 4.5% of the year 2004 to 0% of the year 2007. The highest residual concentration of each pesticide detected in commercial agricultural products was investigated by year. That is, in the year 2004 and 2005, chlorpyrifos, chlorothalonil, diazinon, endosulfan, ethoprophos, fenarimol and procymidone were detected over the tolerance in kale, parsley, celery, chard and lettuce, and in the year 2006, permethrin in the soybean and peanut. The detection rate and violation rate of pesticides were highly increased in the order of the endosulfan, chlorpyrifos, procymidone, chlorfenapyr, fenitrothion, imazalil, isoprothiolane, methidathion and permethrin. The detection rate and violation rate of pesticides were increased after August every year.

소음인(少陰人) 곽향정기산(藿香正氣散)의 위해물질에 대한 안전성 연구 (Safety on Hazardous Substances of Soeumin Kwakhyangjeonggi-san)

  • 서창섭;김정훈;황대선;신현규
    • 사상체질의학회지
    • /
    • 제22권3호
    • /
    • pp.132-140
    • /
    • 2010
  • 1. Objective: To compare the contents and transfer rate of hazardous substances in crude, washing solution, crude after washing, decoction and remnant after boiling. 2. Methods: The heavy metal contents of each step were measured by inductively coupled plasma mass spectrometer (ICP-MS) and mercury analyzer (MA-2). In order to analyze pesticides in each sample we used simultaneous multi-residue analysis of pesticides by GC/ECD, which was followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide (SO2) were performed by Monier-Williams distillation method. 3. Results: 1) Contents (mg/kg) of heavy metals in decoction of all herbal medicine prescriptions were not detected. 2) Transfer rates (%) of heavy metals from crude to remnant were As (83.3%), Cd (100.0%), Pb (182.6%) and Hg (100.0%). 3) Contents (mg/kg) of residual pesticides were not detected. 4) Transfer rate (%) of sulfur dioxide (SO2) from crude to remnant was 44.2%. 4. Conclusion: Our results showed that boiled herbal medicine prescriptions which we take is safe from the hazardous substances.

정량적인 구조-활성상관(QSAR) 기법에 의한 새로운 농약의 개발 II. 자유에너지 직선관계(LFER)와 설명인자들 (Development of new agrochemicals by qnantitative structure-activity relationship (QSAR) methodology. II. The linear free energy relationship (LFER) and descriptors)

  • 성낙도
    • 농약과학회지
    • /
    • 제6권4호
    • /
    • pp.231-243
    • /
    • 2002
  • 자유 에너지 직선관계(LFER)를 위시하여 약효와 잔류 지속성은 물론, 전이상태 착물을 모방하기 위한 농약들의 가수분해 반응 메카니즘과 그 필요성에 대하여 논의하였다. 또한, 정량적인 구조-활성상관(QSAR) 기법을 활용하여 새로운 농약을 탐색하고 개발하는데 있어서 생물활성을 구체적으로 이해하기 위하여 양자 약리학적 파라미터를 포함한 전자효과, 입체효과 및 소수성 효과 등의 설명 인자들과 그 활용 연구 사례 그리고 새로운 농약의 개발 과정에 대하여 간략하게 요약하였다.

아메리카잎굴파리에 대한 항생제 살충제의 생존과 생식에 미치는 영향 (Effect of Antibiotics Insecticides on Survival and Reproduction of the Serpentine Leafminer, Liriomyza trifolii)

  • 이정은;서동규;김길하
    • 농약과학회지
    • /
    • 제10권4호
    • /
    • pp.329-334
    • /
    • 2006
  • 본 연구는 시판되고 있는 4종의 항생제계통 살충제(abamectin, emamectin benzoate, spinosad=등록약제, milbemectin=미등록약제)에 대한 아메리카잎굴파리의 발육단계별 약제감수성을 조사하였다. 4약제 모두 알과 유충에 대해서 높은 살충효과를 나타내었으나, 번데기와 성충에 대해서는 낮은 살충효과를 나타내었다. 암컷성충의 산란억제 효과는 abamectin, emamectin benzoate, spinosad에서 100%를 나타내었으며, milbemectin은 85%의 산란억제율을 나타내었다. 섭식흔적수는 milbemectin을 제외하고는 크게 감소되었으며, 성충수명 역시 milbemectin을 제외하고 무처리의 평균 5.5일에 비하여 0.8-1.4일로 크게 단축되었다. 산란효과는 abamectin, emamectin benzoate 그리고 spinosad는 처리 후 7일까지 높았으나, milbemectin은 낮았다.

Evaluation of Dermal Absorption Rate of Pesticide Chlorpyrifos Using In Vitro Rat Dermal Tissue Model and Its Health Risk Assessment

  • Kim, Su-Heyun;Jang, Jae-Bum;Park, Kyung-Hun;Paik, Min-Kyoung;Jeong, Sang-Hee
    • 대한의생명과학회지
    • /
    • 제22권4호
    • /
    • pp.140-149
    • /
    • 2016
  • All pesticides must be assessed strictly whether safe or not when agricultural operators are exposed to the pesticides in farmland. A pesticide is commonly regarded as safe when estimated dermal absorption amount is lower than the acceptable operator's exposure level (AOEL). In this study, dermal absorption rate of chlorpyrifos, a widely used organophosphate insecticide, was investigated using rat dermal tissue model. Chlorpyrifos wettable powder solved in water (250, 500 and 2,500 ppm) was applied to freshly excised rat dermal slices ($341{\sim}413{\mu}m$ thickness) on static Franz diffusion cells at $32^{\circ}C$ for 6 hours. After exposure period of 6 hours, and then washing-at residual amount of chlorpyrifos was analyzed in dermal tissues, tape strips, washing solution, washing swabs of receptor bottles and receptor fluids at 1, 2, 4, 8 and 24 hours. Chlorpyrifos was only detected in dermal tissue but not found in receptor fluid at each concentration and time point, and the absorption rate of 250, 500 and 2,500 ppm was 2.36%, 1.96% and 1.69%, respectively. The estimated exposure level of chlorpyrifos was calculated as 0.012 mg/kg bw/day. The health risk for farmers in this condition is a level of concern because the estimated exposure level is 12 times higher than AOEL 0.001 mg/kg bw/day. However, actual health risk will be alleviated than estimated because absorbed chlorpyrifos is not permeated into internal body system and only retained in skin layer.