Development of new agrochemicals by qnantitative structure-activity relationship (QSAR) methodology. II. The linear free energy relationship (LFER) and descriptors

정량적인 구조-활성상관(QSAR) 기법에 의한 새로운 농약의 개발 II. 자유에너지 직선관계(LFER)와 설명인자들

  • Sung, Nack-Do (Division of Applied Biology & Chemistry, College of Agriculture & Life Sciences, Chungnam National University)
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부)
  • Published : 2002.12.27

Abstract

Starting with linear free energy relationships (LFER), drug design to mimic of the activated complexes at transition state, and hydrolysis mechanisms to control the potency and residual properties of pesticides were introduced and summarized for the necessity. In order to understand the searching or development of new agrochemicals by two dimensional quantitative structure-activity relationship (2D QSAR) methodology, a series of the various descriptors, steric constants, electronic constants including quantum pharmacological parameters and hydrophobic constants were classified and discussed for results of the several studied cases. In addition, the processes of development of new agrochemicals by QSAR techniques were introduced simply.

자유 에너지 직선관계(LFER)를 위시하여 약효와 잔류 지속성은 물론, 전이상태 착물을 모방하기 위한 농약들의 가수분해 반응 메카니즘과 그 필요성에 대하여 논의하였다. 또한, 정량적인 구조-활성상관(QSAR) 기법을 활용하여 새로운 농약을 탐색하고 개발하는데 있어서 생물활성을 구체적으로 이해하기 위하여 양자 약리학적 파라미터를 포함한 전자효과, 입체효과 및 소수성 효과 등의 설명 인자들과 그 활용 연구 사례 그리고 새로운 농약의 개발 과정에 대하여 간략하게 요약하였다.

Keywords

References

  1. Accelrys: $Cerius^2$ QSAR+, Insight II, Catalyst program package (Imagene). Molecula Simulations Inc. & www.sinica.edu.tw
  2. Andrew, P. R. and D. A. Winkler (1984) The design and medical applications of transition state analogues, pp. 147., In Drug Design; Fact or Fantasy? (ed. Jolles, J. and K. R. H. Wooldbridge, ed.), Academic Press, London
  3. Chapman, N. B. and J. Shorter (1978) Correlation Analysis in Chemistry: Recent Advances. Plenum Press, New York and London
  4. Charton, M. (1981) Electrical effect substituent constants for correlation analysis., pp.119-251. Vol. 13. In Progress in Physical Organic Chemistry. (ed. R. W.Taft), John Wiley & Sons. Inc., Toronto
  5. CMC (1996) Computational medicinal chemistry; CMC modeling guid, computer aided molecular design, QSAR. Faculty of pharmacy Utecht university; www.cmc.pharma.un.nl, Netherland
  6. Craig, P. N. (1971) Interdependence between physical parameters and selection of substituent groups for correlation studies, J. Med. Chem. 14:680-684
  7. Cox, R. A. (1987) Carbocation, Ch. 9. pp. 292, In Organic Reaction Mechanisms 1984 (Knipe, A. C. and W. E. Watts ed.). John Wiley & Sons, Toronto
  8. Denney, R. C. (1969) Named Organic Reactions, pp.43, Butterworths & Co. Ltd., London
  9. Dugas, H. (1989) Bioorganic Chemistry, Ch.3, pp.128. Springer-Verlag, New York
  10. Dunn, W. J. III (1977) Molar refractivity as an independent variable in quantitative structure-activity studies. Eur. J. Med. Chem. 12;109-127
  11. Fleming, I. (1976) Frontier Orbitals and Organic Chemical Reactions, Ch. 3., p.37. John Wiely & Sons, Toronto
  12. Fujita, T. and T. Nishioka (1976) The analysis of the ortho effects. pp.49-89. Vol.12. In Progress Physical Organic Chemis$\sigma$y (ed. R. W. Taft), John Wiley & Sons., Toronto
  13. Fujita, T. (1983) Substitution effects in the partition coefficient of disubstituted benzenes: Bidirectional Hammett-type relationships. pp. 75 -113, Vol. 14, In Progress in Physical Organic Chemistry (ed. Taft. R. W.). John Wiley & Sons., ronto
  14. Fujita, T., T. Nishioka and M. Nakajima (1977) Hydrogenbonding parameter and its significance in quantitative structure-activity studies, J. Med. Chem., 20;1071-1081
  15. Gallo, R. (1983) Treatment of steric effect, pp.115-163. Vo. 14., In Progress in Physical Organic Chemistry (ed. Taft. R. W.). John Wiley & Sons., Toronto
  16. Gallop, M. A., R. W. Barrett, W. J. Dower., S. P. A. Fodor and E. M. Gardn (1994)Applications of combinatorial technologies to drug discovery. I. Back ground and peptide combinatorial libraries, J. Med. Chem. 37:1233-1251
  17. Hansch, C. and T. Fujita (1964) Rho-sigma-pi analysis. A method for the correlation of biological activity and chemical structure, J. Am. Chem. Soc. 86:1616-1626
  18. Hansch, C. and A. J. Leo (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology. John Wiely & Sons, New York
  19. Hansch, C. and A. Leo (1995b) Exploring QSAR: Fundamentals and Applications in Chemistry and Biology. ACS Professional Reference Book, American Chemistry Society, Washington, DC
  20. Isaacs, N. S. (1987) Physical Organic Chemistry, Ch. 4, Longman Scientific & Technical, New York, U.S.A.
  21. Johnson, C. D. (1980) The Hammett Equation. Cambridge University Press, Cambridge
  22. Kansy, M. (1996) Molecular properties, Ch.2., In Structure-Property Correlations in Drug Research (ed. Waterbeernd, H. V. D.). Academic Press, R. G. Landes Co. Austin
  23. Knipe A. C. (1987) Addition reactions: Polar addition, Ch. 13. pp. 309 & pp. 400., In Organic Reaction Mechanisms 1984 (Knipe, A. C. and W. E. Watts ed.). John Wiley & Sons, Toronto
  24. Kubinyi, H. (1988) Free Wilson analysis. Theory,applications and its relationship to Hausch analysis, Quant. Sruct.-Act. Relat. 7:121-133
  25. Leo, A., C. Hausch and P. Y. C. Jow (1976) Dependence of hydrophobicity of a polar molecules on their molecular volume, J. Med. Chem. 19:611-615
  26. Lowry, T. H. and K. S. Richardson (1981) Mechanism and Theory in Organic Chemistry, Ch. 7, pp.508, Harper & Row Pub., New Yark
  27. McCall, J. M. (1975) Liquid-liquid partition coefficients by high-pressure liquid chromatography, J. Med. Chem. 18:549-552
  28. Richards, W. G. (1972) Quantum Pharmacology, Ch. 11., Butterworths. London, Boston
  29. Schloss, J. V. (1988) Significance of slow binding enzyme inhibition and its relationship to reaction intermediate analogs, Acc. Chem. Res. 21:348-353
  30. Shorter, J. (1981) Nucleophilic aliphatic substitution. Ch. 9. p.344. In Organic Reaction Mechanisms 1979 (Knipe, A. C. and W. E. Watts ed.). John Wiley & Sons, Toronto
  31. Shorter, J. (1982) Nucleophilic aliphatic substitution. Ch 9. p. 344. In Organic Reaction Mechanisms 1981 (Knipe, A. C. and W. E. Watts ed.). John Wiley & Sons, Toronto
  32. Shorter, J. (1987) Nucleophilic aliphatic substitution. Ch. 10. p.319, In Organic Reaction Mechanisms 1984 (Knipe, A C. and W. E. Watts ed.). John Wiley & Sons, Toronto
  33. Spilllane, W. J. (1987) Reactions of acids and their derivatives. etc., Ch. 2. p.46, In Organic Reaction Mechanisms 1984 (Knipe, A. C. and W. E. Watts ed.). John Wiley & Sons, Toronto
  34. Sung, N. D. (2000) Collected Works. Reaction Kinetics & Mechanism; Exploring QSARs. pp.305-640, OB Planning Co.
  35. Swain, C. G. and E. C. Lupton, Jr. (1968) Field and resonance components of substituent effects, J. Am. Chem. Soc. 90:4328-4337
  36. Taft, R. W. Jr (1965) Steric Effects in Organic Chemistry (ed. Newman, M. S.). pp.556-675, Wiley & Sons, New York
  37. Tomlin, C. ed., (1997) The Pesticides Manual, (11th ed.), p.140, p.677 & p.1163, Crop Protection Publications, Surrey, U. K.
  38. Topliss, J. G. (1972) Utilization of operational schemes for analog synthesis in drug design., J. Med. Chem. 15:1006-1011
  39. Verloop, A., W. Hoogenstraaten and J. Tipker (1976) Development and application of new steric substituent parameters in drug design, Vol. 7., pp. 165-207. In Drug Design (ed. E. J. Ariens). Academic Press, New York
  40. Westheimer, F. H. (1968) Pseudo-rotation in the hydrolysis of phosphate esters, Ace. Chem. Res. 1:70-78
  41. Wells, P. R. (1963) Linear free energy relationships, Chem. Rev. 63;171-219
  42. Wexler, R. R., W. J. Greenlee, J. D. Irvin, M. R. Goldberg, K. Prendergast, R. D. Smith and P. B. Tinmlermans (1996) Nonpeptide angiotensin II receptor antagonists: The next generation in antihypertensive theraphy, J. Med. Chem. 39:625-656
  43. Wohl, A. J. (1971) A molecular orbital approach to quantitative drug design, Ch.4, pp.381-449. Vol. 3., In Drug Design (ed. E. J. Ariens), Academic Press, New York and London
  44. 성낙도, 박승희 (1983) Dimethyl-2,2-dichlorovinylphosphate(DDVP)의 분해반응에 관한 연구. 한국농화학회지 26(2):125-131
  45. 성낙도 (1984) 살충성, O,O-Diethylphenylphosphate 유도체들에 의한acetylcholinesterase의 phosphorylation에 미치는 자유에너지 관계. 충남대 농업과학연구 11(1):176-181
  46. 성낙도, 박천규, 박문규, 권기성, 김태린 (1985) 핵자기 공명 분광법에 의한 N-benzylidene aniline 유도체중 imidoyl proton의 chemical shift에 미치는 자유 에너지 관계. 대한화학회지 29(3):277-282
  47. 성낙도, 박승희, 명평근, 전용구, 이천배 (1986) 살충성 O,O-diethylphenylphosphate유도체의 형태와 반응성에 관한 분자 괘도론적 연구. 한국식물보호학회지 24(4):231-238
  48. 성낙도, 이숙주, 윤세중, 권기성, 김태린 (1988) N-($\rho$-chloro-benzoyl)-C-phenoxyimidoyl chloride 유도체 중 작용기들의 신축 흡수에 미치는 자유 에너지 관계. 대한화학회지 32(5):507-509
  49. 성낙도 (1989a) 1-(phenoxymethyl)benzotriazole 유도체 중 methylene 양성자의 chemical shift에 관한 자유에너지 관계의 조성과 용매 의존성. 대한화학회지 33(5):538-544
  50. 성낙도, 명평근, 이천배, 유병태 (1989b) 살충성, O,O-dimethylphenylphosphate 유도체들에 의한 acetyl-cholinesterase의 phosphorylation에 관한 양자 약리학적 연구.충남대 약학논문집 2:21-26
  51. 성닥도 (1989c) 왜, m-methyl 치환 살충제들은 강한 살충작용을 나타낼까? Phenyl N-methylcarbamate와 m-xylyl-N-methylcarbamate 유도체들에 관하여 . 한국농화학회지 32(2):170-177
  52. 성낙도, 권기성, 김태린 (1989d) Strylylphenylsulfone 유도체의 가수분해 반응 메카니즘과 반응속도론. 대한화학회지 33:120-126
  53. 성낙도, 윤태용, 권기성, 김태린 (1990) 살충성 2-chloro-1-(2,4,5-trichlorophenyl)vinyldimet-hylphosphate(Gardona)의 가수분해 반응메카니즘. 대한화학회지 34(5):483-489
  54. 성낙도, 박현주, 박승희, 변종영 (1991) Benzotriazole계 유도체의 제초활성과 분자설계. 한국농화학회지 34(3):287-294
  55. 성낙도, 김현이, 박천규 (1994) 살충성 O,O-diethyl-$\alpha$-cyanobenzylideneaminooxyphos-phorothioate(Volaton)의 가수분해 반응메카니즘. 한국농화학회지 37(2):124-129
  56. 성낙도, 이찬복, 류재옥, 김대황 (1995a) 제초성 N-(2 ,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-치환(Z)-6-(1-hydroxy-2-fluoroethyl)benzenesulfonamide 유도체의 가수분해 반응에카니즘. 한국농화학회지 38(5):455-462
  57. 성낙도, 유성재, 전동주, 김대황 (1995b) Phenylvinyl sulfone 유도체의 제초활성. 한국농화학회지, 38:90-94
  58. 성낙도, 이광재, 김용집, 김대황 (1996) 제초성 Flaza sulfuron의 Smile 자리옮김 반응. 한국농화학회지 39(1):455-462
  59. 성낙도, 유성재, 강문성 (1997) 살충성 imidacloprid의 가수분해 반응 메카니즘. 한국농화학회지 40(1):53-57
  60. 성낙도, 유성재, 최경섭, 권기성 (1998) 살충제, Buprofezin의 가수분해 반응 메카니즘. 한국농약과학회지 2(1):45-52
  61. 성낙도 (2002a) 정량적인 구조-활성상관 (QSAR) 기법에 의한 새로운 농약의 개발. I. 기본개념과 QSAR기법의 유형. 한국농약과학회지 6(3):166-174
  62. 성낙도 (2002b) 살충제, O,O-diethyl-O-(1-phenyl-3-trifluo-romethylpyrazol-5-yl) phospho-rothioate(Flupyrazofos)의 가수분해 반응 메카니즘. 한국농약학회지 6(3):218-223