• Title/Summary/Keyword: Residual ozone

Search Result 63, Processing Time 0.02 seconds

Epidemiological Studies on Giardia Infection Associated with environmental Pollution (Giardia에 의한 환경오염(環境汚染)과 감염(感染)에 관한 역학적(疫學的) 연구(硏究))

  • Lee, Keun-Tae;Kim, Seok-Chan;Song, Jong-Sool;Chung, Pyung-Rim
    • Journal of agricultural medicine and community health
    • /
    • v.9 no.1
    • /
    • pp.56-66
    • /
    • 1984
  • Giardia lamblia is a pathogenic flagellate causing intestinal disorders such as diarrhea, abdominal pain and malabsorption of nutrients. Giardia is mainly infected by the ingestion of contaminated foods per os. Craun (1979) has recently reported that mass infection of this flagellate through the contaminated water supply systems is one of public health hazards. Also, so-called traveller's diarrhea is sometimes caused by Giardia infection (CDC, U.S.A., 1971). However, a few epidemiological studies figuring out the mode of infection or control measures of Giardia infection has been done so far in Korea. The present study was aimed to know the prevalence of Giardia infection in several Korean populations, detectability of this flagellate in water systems and the viability of the cysts against sewages and disinfectants applying to drinking water. In the present study, 388 stool specimens from orphanage children in Chun-joo, Chung-joo, On-yang and Chun-an areas and 538 stool specimens from inhabitants in Woo-do, In-chon, and Chun-joo were examined by formalin-ether concentration technique to detect out Giardia cysts. On the other hand, water samples from 14 sites of Han River and its tributaries were collected in May through July, 1984. Fifty liter of water sample in each sampling site was then filtered through water filtering system deviced by U.S. Environmental Proutection Agency and the sediments rinsed out from the thread rolls, a part of water filtering system, were examined to detect out the Giardia cysts. In order to observe the viability of Giardia cysts in the sewage samples, the cysts were treated in it at $4^{\circ}C$ or $25^{\circ}C$ for 7 through 28 days. For this purpose, the cysts were also exposed to various concentrations of disinfectants such as chlorine, iodine and ozone gas for proper time intervals. After treatment, the viability test of the Giardia cysts were carried out by method of Rice and Schaefer (1981) with minor modification. The results obtained in this study were as follows : 1) The detection rates of G lamblia cysts in the stool specimens were 18.3% in orphans and 4.3% in general examinees. 2) The prevalences of Giardia Infection were higher in the young age groups than in-adults. The highest positive rate was 18.4% in the age group less than 10. 3) Of 14 water specimens sampled from Han River system and its tributaries around the Seoul area, the Giardia cysts were detected from 4 samples, and no cyst was found in the water supply systems. 4) The cysts treated in the sewage survived for 28 days at $4^{\circ}C$ and for 13 days at $25^{\circ}C$. 5) The cysts were completely destroyed within 60 minutes by exposure to 8 mg/l of residual chlorine at 4g and within 30 minutes by exposure to the same concentration of chlorine at $25^{\circ}C$. 6) The cysts were all dead when exposed to 1 mg/1 of iodine for 60 minutes at $4^{\circ}C$ or $25^{\circ}C$. 7) The cysts were destroyed after 10 minute exposure in 0.15 mg to 0.25mg of residual ozone gas per liter. Summarizing the above results, it is considered that Giardia infection is regarded as water-borne disease and the cysts are able to be controlled by the application with the disinfectants in the water supply systems.

  • PDF

Removal Characteristics of Residual Hydrogen Peroxide (H2O2) according to Application of Peroxone Process in O3/BAC Process (O3/BAC 공정에서 Peroxone 공정 적용에 따른 잔류 과산화수소 제거 특성)

  • Yeom, Hoon-Sik;Son, Hee-Jong;Seo, Chang-Dong;Kim, Sang-Goo;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.889-896
    • /
    • 2013
  • Advanced Oxidation Processes (AOP) have been interested for removing micropollutants in water. Most of water treatment plants (WTPs) located along the lower part of Nakdong River have adopted the $O_3/BAC$ process and have interesting in peroxone process a kind of AOP. This study evaluated the removal characteristics of residual hydrogen peroxide ($H_2O_2$) combining with the biofiltration process in the next BAC process when the hydrogen peroxide is applied for the WTP operating $O_3/BAC$ process. In the experiment, changing the temperature and the concentration of $H_2O_2$ of influent, the biofiltration process showed rapidly dropped the biodegradability when the $H_2O_2$ concentration was increased and lowered water temperature while BAC process maintained relatively stable efficiency. The influent fixed at $20^{\circ}C$ and the concentration of $H_2O_2$ at 300 mg/L was continuously input for 78 hours. Most of the $H_2O_2$ in the influent did not remove at the biofiltration process controlled 5 to 15 minutes EBCT condition after 24~71 hours operating time while BAC process controlled 5 to 15 minutes EBCT showed 38~91% removal efficiency condition after 78 hours operating time. Besides, after 78 hours continuously input experiment, the biomass and activity of attached bacterial on the biofilter and BAC were $6.0{\times}10^4CFU/g$, $0.54mg{\cdot}C/m^3{\cdot}hr$ and $0.4{\times}10^8CFU/g$, $1.42mg{\cdot}C/m^3{\cdot}hr$ respectively. These biomass and activity values were decreased 99% and 72% in biofilter and 68% and 53% in BAC compared with initial condition. The biodegradation rate constant ($k_{bio}$) and half-life ($t_{1/2}$) in BAC were decreased from $1.173min^{-1}$ to $0.183min^{-1}$ and 0.591 min to 3.787 min respectively according to increasing the $H_2O_2$ concentration from 10 mg/L to 300 mg/L at $5^{\circ}C$ water temperature and the $k_{bio}$ and $t_{1/2}$ were $1.510min^{-1}$ to $0.498min^{-1}$ and 0.459 min to 1.392 min at $25^{\circ}C$ water temperature. By increasing the water temperature from $5^{\circ}C$ to $15^{\circ}C$ or $25^{\circ}C$, the $k_{bio}$ were increased 1.1~2.1 times and 1.3~4.4 times. If a water treatment plant operating $O_3/BAC$ process is considering the hydrogen peroxide for the peroxone process, post BAC could effectively decrease the residual $H_2O_2$, moreover, in case of spilling the $H_2O_2$ into the water process line, these spilled $H_2O_2$ concentration can be able to decrease by increasing the EBCT at the BAC process.

Characteristics in Atmospheric Chemistry between NO, NO2 and O3 at an Urban Site during MAPS (Megacity Air Pollution Study)-Seoul, Korea (서울 도심대기의 NO, NO2와 O3 사이의 대기화학적 특성 연구)

  • Kim, Deug-Soo;Jeong, Jinsang;Ahn, Joonyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.4
    • /
    • pp.422-434
    • /
    • 2016
  • This study was conducted to understand roles of $NO_x(=NO+NO_2)$ on high $O_3$ episodes at an urban monitoring station in Seoul. Concentrations of NO, $NO_2$, $NO_y$ and $O_3$ were measured intensively at KIST monitoring station which located at urban center in Seoul metropolitan area during May 18~June 13, 2015. Sampling period was planed because high $O_3$ and PM occurred frequently during from late spring to early summer months in Seoul. The experimental site locates in NW from center of Seoul and is surrounded by residential area. Belt highway of the city runs from north to west side nearby experimental site. Vehicle exhaust emissions due to heavy traffic influenced $NO_x$ concentration at the site during northwesterly wind. Specific $NO_2$ concentration was measured by Blue Light photolytic converter, and it was compared to $NO_2$ concentration measured by molybedenum converter. $[NO_2]_{phtolysis}$ was usually lower than $[NO_2]_{molybedenum}$ during the experiment period; however their diurnal variations were very similar. The linear relationship between these $NO_2$ concentrations was found to be $[NO_2]_{phtolysis}$=0.64 $[NO_2]_{molybedenum}$ - 2.6, $r^2$=0.83 during May 16~8, 2015. The difference between $NO_2$ by molybdenum converter and by photolytic converter (${\Delta}NO_2=[NO_2]_{molybedenum}-[NO_2]_{phtolysis}$) accounted for residual $NO_y$ which can represent $NO_z$ (=$NO_y-NO_x$). $O_3$ concentration showed typical daily trend which has maximum at late afternoon and minimum during the night. $O_3$ increased at a rate of 7 ppb/hr since 8 am. and reached the maximum concentration (~80 ppb) at 3 pm.. The diurnal pattern of $O_3$ was inversely related with that of $NO_2$, suggesting that the formation of $O_3$ was the result of photochemical activity of $NO_2$.