• Title/Summary/Keyword: Residual monomer

Search Result 31, Processing Time 0.026 seconds

THE LEVEL OF RESIDUAL MONOMER IN INJECTION MOLDED DENTURE BASE MATERIALS

  • Lee Hyeok-Jae;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.360-368
    • /
    • 2003
  • Statement of Problem: The residual monomer of denture base materials causes hypersensitivity on oral mucosa and intereferes with the mechanical properties of the cured resin. The amount of residual monomer is influenced by materials, curing cycle, processing method, and etc. Purpose: The aim of this study was to investigate the residual methyl methacrylate(MMA) content of injection molded denture base polymer, and to compare this with the self-cured resin and the conventional compression molded heat-cured resin. Materials and Methods: Disc shaped test specimens (50mm in diameter and 3mm thick) were prepared in a conventional flasking technique with gypsum molding. One autopolymerized denture base resins (Vertex Sc. Dentimex. Netherlands) and two heat-cured denture base resins (Vertex RS. Dentimex. Netherlands, Ivocap. Ivoclar Vivadent, USA) were used. The three types of specimens were processed according to the manufacturer's instruction. After polymerization, all specimens were stored in the dark at room temperature for 7 days. There were 10 specimens in each of the test groups. 3-mm twist drills were used to obtain the resin samples and 650mg of the drilled sample were collected for each estimation. Gas chromatography (Agillent 6890 Plus Gas Chromatograph, Agillent Co, USA) was used to determine the residual MMA content of 10 test specimens of each three types of polymer. Results: The residual monomer content of injection molded denture base resins was $1.057{\pm}0.141%$. The residual monomer content of injection molded denture base resins was higher than that of compression molded heat cured resin ($0.867{\pm}0.169%$). However, there was no statistical significant difference between two groups (p>0.01). The level of residual monomer in self cured resin($3.675{\pm}0.791$) was higher than those of injection molded and compression molded heat cured resins (p<0.01). Conclusion: With respect to ISO specification pass / fail test (2.2% mass fraction) of residual monomer, injection molding technique($1.057{\pm}0.141%$) is a clinically useful and safe technique in terms of residual monomer.

EFFECT OF CURING CONDITIONS ON THE MONOMER ELUTION OF ORTHODONTIC ACRYLIC RESIN (교정용 아크릴릭 레진의 중합조건에 따른 모노머 용리)

  • Noh, Hong-Seok;Kim, Jae-Moon;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.3
    • /
    • pp.477-486
    • /
    • 2008
  • Acrylic resin is widely used in dental practice. However, the residual monomer in acrylic resin could act as a negative biocompatability on human body. The aim of this study was to evaluate the amount of the monomer elution from polymerized orthodontic acrylic resin. Orthodontic acrylic resin was used in the study. The curing condition of the resin was controlled by temperature, pressure, aquatic and atmospheric environment. The duration and amount of monomer elution and timedependent plot was recorded by high performance liquid chromatography. The result showed that the only monomer eluted from the resin was methyl methacrylic acid. And the amount of the monomer elution has diminished considerably by time progress especially within 24 hours. Furthermore, elution of the residual monomer was significantly lower in group of pressure, moisture and elevated temperature than control (p<.05). According to this study, it was thought that the elution of residual monomer might be influenced by curing environment.

  • PDF

Process Design for Recovery of Unreacted Styrene Monomer for Utility Saving (유틸리티 절감을 위한 미반응 스티렌 모노머 회수공정의 설계)

  • Bong, Jooyoung;Na, Sujin;Lee, Kwang soon
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.54-59
    • /
    • 2017
  • A study for process design to curtail the utility consumption during residual styrene monomer recovery in an ABS polymerization process was carried out. Among different techniques for residual monomer recovery, the steam stripping is dominantly employed in industries. The existing process, however, consumes a large amount of utility (steam and cooling water), and this study focused on the design of a new process that can substantially spare the utility consumption. A new process was configured to utilize the latent heat of the stripping steam, which is condensed with the monomer using cooling water after exiting the stripper. The condenser was modified to use vacuum state water as coolant and to generate vacuum state steam using the latent heat of the stripping steam. The steam is injected to the stripper as the stripping steam after upgrading using a compressor. Through this modification, consumption of steam and also cooling water could be significantly reduced at some expense of electricity for compressor operation.

Analysis of the Evaporation Behavior of Resin Droplets in UV-Nanoimprint Process (UV 나노임프린트 공정에서의 수지 액적 증발 거동 분석)

  • Choi, D.S.;Kim, K.D.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.268-273
    • /
    • 2009
  • Ultraviolet nanoimprint lithography (UV-NIL), which is performed at a low pressure and at room temperature, is known as a low cost method for the fabrication of nano-scale patterns. In the patterning process, maintaining the uniformity of the residual layer is critical as the pattern transfer of features to the substrate must include the timed etch of the residual layer prior to the etching of the transfer layer. In pursuit of a thin and uniform residual layer thickness, the initial volume and the position of each droplet both need to be optimized. However, the monomer mixtures of resin had a tendency to evaporate. The evaporation rate depends on not only time, but also the initial volume of the monomer droplet. In order to decide the initial volume of each droplet, the accurate prediction of evaporation behavior is required. In this study, the theoretical model of the evaporation behavior of resin droplets was developed and compared with the available experimental data in the literature. It is confirmed that the evaporation rate of a droplet is not proportional to the area of its free surface, but to the length of its contact line. Finally, the parameter of the developed theoretical model was calculated by curve fitting to decide the initial volume of resin droplets.

Renewable Monomer Based on Rosin in Photoinitiated Radical Polymerization

  • Shim, Sang-Yeon;Hong, Young-Taik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.192-197
    • /
    • 2000
  • Rosin moeity-containing monomer was prepared by the reaction of abietic acid with 2-hydroxyethyl methacrylate in tetrahydrofuran(THF) using diethyl azodicarboxylate as a catalyst. This new monomer was photo-polymerized to give thin films in the presence of a radical type initiator. The rate of photo-polymerization and amount of cured polymer were determined using the residual yield method. A thermogravimetric analysis of the cured polymer showed that the film was stable up to 170oC, at which point the polymer film has lost 10 wt % of its weight.

Artificial neural fuzzy system and monitoring the process via IoT for optimization synthesis of nano-size polymeric chains

  • Hou, Shihao;Qiao, Luyu;Xing, Lumin
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.375-386
    • /
    • 2022
  • Synthesis of acrylate-based dispersion resins involves many parameters including temperature, ingredients concentrations, and rate of adding ingredients. Proper controlling of these parameters results in a uniform nano-size chain of polymer on one side and elimination of hazardous residual monomer on the other side. In this study, we aim to screen the process parameters via Internet of Things (IoT) to ensure that, first, the nano-size polymeric chains are in an acceptable range to acquire high adhesion property and second, the remaining hazardous substance concentration is under the minimum value for safety of public and personnel health. In this regard, a set of experiments is conducted to observe the influences of the process parameters on the size and dispersity of polymer chain and residual monomer concentration. The obtained dataset is further used to train an Adaptive Neural network Fuzzy Inference System (ANFIS) to achieve a model that predicts these two output parameters based on the input parameters. Finally, the ANFIS will return values to the automation system for further decisions on parameter adjustment or halting the process to preserve the health of the personnel and final product consumers as well.

EFFECT OF CONTAMINANTS ON THE PUTTY-WASH BOND STRENGTH IN TWO-STEP RELINE TECHNIQUE USING VINYL POLYSILOXANE IMPRESSION MATERIALS (Vinyl Polysiloxane 인상재를 이용한 이회 인상법에서 contaminants가 putty-wash 결합력에 미치는 영향)

  • Kim, Mu-Hyon;Jeong, Chang-Mo;Jeon, Young-Chan;Hwang, Hie-Seong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.266-276
    • /
    • 1996
  • Numerous factors are known to affect the accuracy of elastomeric impression materials. Factor often overlooked is the quality of the bond between putty and wash during corrective reline impression technique. The putty-wash bond strength must be strong enough to over-come the local stress at putty-wash interface. It is not always possible to avoid saliva contamination in making corrective wash impres-sion. And putty preliminary impression material con be used as a template for provisional restoration. Human saliva and the residual monomer of autopolymerizing acrylic resin are thought to affect the bond strength and the failure type. This study examined the effect of contaminants like human saliva, and residual resin monomer on the putty-wash bond strength and the effectiveness of treatment. 1. Of the tested three brands of Vinyl Polysiloxane impession meterial, Express Exhibited the greatest bond strength followed by Eamix and Perfect showed the lowest putty-wah bond strength. 2. Coating the putty substrates with human saliva did not produce decreased failure load in all the breands of Vinyl Polysiloxane impression meterail. 3. Of the three brands of VPS impression material that were exposed to methhylmethacry-late resin(Jet), only the putty-wash bond strength of the Perfect group diminished signifi-cantly. Moreover, all the specimens from group C of Perfect exhibited adhesive failure. 4. Exposing the substrates to ethylmethacrylate resin(SNAP. diminished the putty-wash bond strength significantly. With Perfect and Examix, failure occurred cohesively through the light-body, whereas with Express, failure occurred adhesive-cohesively. 5. Removing approximately 1mm thickness of the contaminated putty interface was the most effective treatment in countering the undesirable effect caused by residual resin monomer. The putty-wash bond strength of the groups that were treated with 1mm even putty reduction was not significantly different from those of control groups. With Perfect and Examix, cleaning the specimens with gauze soaked in 70% isopropyl alcohol increased the putty-wash bond strength, but was not as effective as 1mm even reduction of contaminated putty substrates. With Express, 70% isoproryl alcohol treatment exhibi0ted comparable putty-wash bond strength to that of control group.

  • PDF

A STUDY OF PHYSICAL PROPERTIES OF COMPOSITE RESIN POLYMERIZATION WITH ARGON LASER (아르곤 레이저에 의한 복합레진의 중합시 물성 변화에 관한 연구)

  • Kim, Deok;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.1-19
    • /
    • 1998
  • After polymerizing composite resin with argon laser and visible light, four test, to be concretely, measurement of compressive strength using Instron testing machine, surface microhardness using Rockwell hardness tester, quantitative analysis of residual monomer using HPLC and analysis of degree of conversion using FTIR, were accomplished. Test groups were a sort of specimen with 3mm diameter, 4mm thickness for measuring compressive strength, two sort of specimen with 7mm diameter, 2mm and 3mm thickness for measuring surface microhardness, quantitative analysing of residual monomer after curing and measuring the degree of conversion, each were divided by six groups according to the condition of light exposure. In case of argon laser, in 1.0W and 0.5W output, the exposure time for specimen were 5 sec, 10 sec respectiyely. In case of visible light, the exposure time for specimen were 20 sec, 40 sec respectively. The test were accomplished and following results were obtained. 1. Compressive strength of composite resin was the highest in the group of 1 W output, exposing for 10 sec with argon laser, followed by the group of 0.5W, exposing for 10 sec with argon laser, the group of exposing for 40 sec with visible light. But there were statistically no significant difference between these three groups(p>0.05). 2. Surface microhardness of composite resin wasn't significantly affected by light curing conditions. 3. BIS-GMA within residual monomer was least detected in the group of exposing for 40 sec. TEGDMA was least detected in the group of 1 W output, exposing for 10 sec with argon laseboth 2mm and 3mm thickness specimen. 4. The degree of conversion of all groups in the 2mm thickness specimen were more than 50%, similar to each other but in the group of 1W, exposing 10 sec with argon laser the degree of conversion was highest in the 3mm thickness specimen. 5. Argon laser could make composite resin to has similar properties with 25% lesser exposure time than visible light.

  • PDF

Influence of 10-Methacryloyloxydecyl Dihydrogen Phosphate on Cellular Senescence in Osteoblast-Like Cells

  • Ju Yeon Ban;Sang-Im Lee
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.264-270
    • /
    • 2023
  • Background: Resin-based dental materials release residual monomers or other substances from incomplete polymerization into the oral cavity, thereby causing adverse biological effects on oral tissue. 10-Methacryloyloxydecyl dihydrogen phosphate (10-MDP), an acidic monomer containing dihydrogen phosphate and methacrylate groups, is the most commonly used component of resin-based dental materials, such as restorative composite resins, dentin adhesives, and resin cements. Although previous studies have reported the cytotoxicity and biocompatibility in various cultured cells, the effects of resin monomers on cellular aging have not been reported to date. Therefore, this study aimed to investigate the effects of the resin monomer 10-MDP on cellular senescence and inflamm-aging in vitro. Methods: After stimulation with 10-MDP, MC3T3-E1 osteoblast-like cells were examined for cell viability by WST-8 assay and reactive oxygen species (ROS) production by flow cytometry. The protein and mRNA levels of molecular markers of aging were determined by western blotting and RT-PCR analysis, respectively. Results: Treatment with 0.05 to 1 mM 10-MDP for 24 hours reduced the survival of MC3T3-E1 cells in a concentration-dependent manner. The intracellular ROS levels in the 10-MDP-treated experimental group were significantly higher than those in the control group. 10-MDP at a concentration of 0.1 mM increased p53, p16, and p21 protein levels. Additionally, an aging pattern was observed with blue staining due to intracellular senescence-associated beta-galactosidase activity. Treatment with 10-MDP increased the levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8, however their expression was decreased by mitogen-activated-protein-kinase (MAPK) inhibitors. Conclusion: Taken together, these results suggest that the exposure of osteoblast-like cells to the dental resin monomer 10-MDP, increases the level of cellular senescence and the inflammatory response is mediated by the MAPK pathway.

Synthesis and Properties of Photocrosslinkable Polymers Containing Rosin Moiety (2) (로진을 함유하는 광경화성 고분자의 합성과 특성(2))

  • 김우식;류상철;홍기헌;이동호;민경은
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.757-762
    • /
    • 2000
  • Vinylbenzyloxystyrylpyridine (VSP) as a photosensitive monomer was synthesized by the reaction of 4-hydroxystyrylpyrydine with 4-vinylbenzyl chloride. Photocrosslinkable polymers containing rosin moiety were then prepared by radically copolymerizing VSP with a methacrylic monomer having rosin moiety. In these copolymerizations, the VSP feed ratios of 5 to 20 mol% were used. The contents of VSP units in the copolymers were determined by UV spectroscopy to be 5.3 to 17.3 mol%. The numberaverage molecular weights of these polymers were in the range of 18000 to 28000 and the polydispersity indexes were about 1.8. The glass transition temperatures were about 15$0^{\circ}C$ and the initial decomposition temperatures were about 34$0^{\circ}C$. The polymers were relatively fast photocrosslinked and the photocrosslinking reaction could be traced by the UV spectroscopy and the residual yield method.

  • PDF