• Title/Summary/Keyword: Residual load

Search Result 684, Processing Time 0.027 seconds

Preparation and Characteristics of Silicone Modified Polyacrylic Hybrid Elastomer (실리콘 변성 폴리아크릴졔 Hybrid Elastomer의 제조와 그 특성)

  • Lee, Byoung-Chul;Kang, Doo-Whan
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.86-91
    • /
    • 2007
  • Polydimethylsiloxane branched HEMA (SH) was Prepared by reacting polydimethylsilorane prepolymer and 2-hydroxyethyl methacrylate (HEMA). Polyacrylate modified Polyorganosiloxane (SMPA) was prepared by polymerization of methacrylic acid(MA), allyl glycidyl ether(AGE), aminopro- pyltrimethoxysilane (APTS), and SH. Their structures were confirmed by the measurement of FTIR and $^1H-NMR$ and thermal properties of SMPA were studied from TGA. Residual weight of SMPA at $400^{\circ}C$ increased according to increasing content of the APTS to 63 from 55%. SMPA sealant was prepared by adding additives, such as viscosity increasing agent, crosslinking agent, and fillers. Adhesion characteristics of SMPA-3 sealant was determined to be maximum load elongation, 2.01 %, and break load elongation, 2.28%. Adhesion characteristics for SMPA sealant prepared from SMPA-3 were better than those for SMPA sealant prepared from SMPA-1 and SMPA-2.

Preminary Study on Stress Analysis of Rock-mass Support Structure using Laboratory Test and Numerical Simulation (실내실험과 수치해석을 이용한 암반지보구조물의 응력거동 분석을 위한 기초 연구)

  • Lee, Jae-Ho;Moon, Hong-Deuk;Yoo, Ji-Hyeung;Kim, Hyuk;Son, Yeong-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.825-831
    • /
    • 2010
  • In this study is stress behavior of steel support structure is to identify basic research. Steel stress due to load step to determine the behavior of steel using strain gauge steel loading test was performed. Numerical analysis and steel loading test using strain gauge on the actual steel stress behavior was analyzed. First, when tensile loading 3.5tonf load side of the plastic behavior appeared. Elastic model, using numerical analysis and comparison of results, the actual value is saved and you can see some difference. This repeated loading tests on steel can be seen from the results of the stress behavior of the steel rather than the elastic behavior of elastic-plastic behavior is because you can see. In addition, the upper and lower steel stress in compression and tension behavior represents the behavior was similar, but different. Steel loading test results, Y-axis get a compression if X-axis is tension. The future based on this study, the stress sensitivity curve of magnetic anisotropy sensor for non-destructive stress measurement technique for the study will be performed. And the behavior of plastic zone and residual stress to determine the numerical analysis using non-elastic model is needed.

  • PDF

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.125-137
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

  • PDF

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.625-625
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

Confinement models for high strength short square and rectangular concrete-filled steel tubular columns

  • Aslani, Farhad;Uy, Brian;Wang, Ziwen;Patel, Vipul
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.937-974
    • /
    • 2016
  • While extensive efforts have been made in the past to develop finite element models (FEMs) for concrete-filled steel tubular columns (CFSTCs), these models may not be suitable to be used in some cases, especially in view of the utilisation of high strength steel and high strength concrete. A method is presented herein to predict the complete stress-strain curve of concrete subjected to tri-axial compressive stresses caused by axial load coupled with lateral pressure due to the confinement action in square and rectangular CFSTCs with normal and high strength materials. To evaluate the lateral pressure exerted on the concrete in square and rectangular shaped columns, an accurately developed FEM which incorporates the effects of initial local imperfections and residual stresses using the commercial program ABAQUS is adopted. Subsequently, an extensive parametric study is conducted herein to propose an empirical equation for the maximum average lateral pressure, which depends on the material and geometric properties of the columns. The analysis parameters include the concrete compressive strength ($f^{\prime}_c=20-110N/mm^2$), steel yield strength ($f_y=220-850N/mm^2$), width-to-thickness (B/t) ratios in the range of 15-52, as well as the length-to-width (L/B) ratios in the range of 2-4. The predictions of the behaviour, ultimate axial strengths, and failure modes are compared with the available experimental results to verify the accuracy of the models developed. Furthermore, a design model is proposed for short square and rectangular CFSTCs. Additionally, comparisons with the prediction of axial load capacity by using the proposed design model, Australian Standard and Eurocode 4 code provisions for box composite columns are carried out.

Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC

  • Kim, Seugnwon;Jung, Haekook;Kim, Yongjae;Park, Cheolwoo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.163-171
    • /
    • 2018
  • Plain concrete is a brittle material with a very low tensile strength compared to compressive strength and critical tensile strain. This study analyzed the dynamic characteristics of high-performance fiber-reinforced cementitious composites based on slurry-infiltrated fiber concrete (SIFCON-based HPFRCC), which maximizes the steel-fiber volume fraction and uses high-strength mortar to increase resistance to loads, such as explosion and impact, with a very short acting time. For major experimental variables, three levels of fiber aspect ratio and five levels of fiber volume fraction between 6.0% and 8.0% were considered, and the flexural strength and toughness characteristics were analyzed according to these variables. Furthermore, three levels of the aspect ratio of used steel fibers were considered. The highest flexural strength of 65.0 MPa was shown at the fiber aspect ratio of 80 and the fiber volume fraction of 7.0%, and the flexural strength and toughness increased proportionally to the fiber volume fraction. The test results according to fiber aspect ratio and fiber volume fraction revealed that after the initial crack, the load of the SIFCON-based HPFRCC continuously increased because of the high fiber volume fraction. In addition, sufficient residual strength was achieved after the maximum strength; this achievement will bring about positive effects on the brittle fracture of structures when an unexpected load, such as explosion or impact, is applied.

A Study on Thermal Ratcheting Structure Test of 316L Test Cylinder (316L 시험원통의 열라체팅 구조시험에 관한 연구)

  • Lee, H.Y.;Kim, J.B.;Koo, G.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.243-249
    • /
    • 2001
  • In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The inelastic deformation of the reactor baffle cylinder can occur due to the moving temperature distribution along the axial direction as the hot free surface moves up and down under the cyclic heat-up and cool-down of reactor operations. The ratchet deformations were measured with the laser displacement sensor and LVDTs after cooling the structural specimen which experiences thermal load up to $550^{\circ}$ and the temperature differences of about $500^{\circ}C$. During structural thermal ratchet test, the temperature distribution of the test cylinder along the axial direction was measured from 28 channels of thermocouples and the temperatures were used for the ratchet analysis. The thermal ratchet deformation analysis was performed with the NONSTA code whose constitutive model is nonlinear combined kinematic and isotropic hardening model and the test results were compared with those of the analysis. Thermal ratchet test was carried out with respect to 9 cycles of thermal loading and the maximum residual displacements were measured to be 1.8mm. It was shown that thermal ratchet load can cause a progressive deformation to the reactor structure. The analysis results with the combined hardening model were in reasonable agreement with those of the tests.

  • PDF

Seismic Performance of Square RC Column Confined with Spirals (나선철근으로 횡구속된 정사각형 RC 기둥의 내진성능)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.88-97
    • /
    • 2012
  • The objective of this research is to investigate the seismic performance and flexure-shear behavior of square reinforced concrete bridge piers with solid and hollow cross section. Test specimens were nonseismically designed with the aspect ratio 4.5 Two reinforced concrete columns were tested under constant axial load while subjected to lateral load reversals with increasing drift levels. Longitudinal steel ratio was 2.217 percent. The transverse reinforcement ratio As/($s{\cdot}h$), corresponding to 58 percent of the minimum lateral reinforcement required by Korean Bridge Design Specifications for seismic detailing, which represent existing columns not designed by the current seismic design specifications or designed by limited ductility concept. This study are to provide quantitative reference data for the limited ductility design concept and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, collapse, etc. Failure behavior, ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio, residual deformation, effective stiffness, plastic hinge length, strain of reinforcements and nonlinear analysis are investigated and discussed in this paper.

Reduction in Mechanical Properties of Radiata Pine Wood Associated with Incipient Brown-Rot Decay (초기(初期) 갈색부후(褐色腐朽)에 따른 라디에타소나무의 역학적(力學的) 성질(性質) 감소(減少))

  • Kim, Gyu-Hyeok;Jee, Woo-Kuen;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.81-86
    • /
    • 1996
  • This study was performed to evaluate the reduction in bending properties of radiata pine sapwood associated with incipient brown-rot decay. Decayed bending specimens by Tyromyces palustris and Gloeophyllum trabeum for varoious periods were tested destructively. Brown-rot decay by T. palustris and G. trabeum caused serious reduction in bending properties at very early stages of decay, with about 30 percent decrease in bending strength observed for only 1~2 percent weight loss. In general, the reduction in bending properties caused by T. palustris was somewhat greater than that by G. trabeum. Work to maximum load was reduced most severely and rapidly from the onset of decay, while modulus of elasticity showed a much more moderate rate of reduction. Modulus of rupture was affected by decay to a greater extent than was modulus of elasticity. Since a relatively strong correlation between weight loss and bending strength was observed, the residual strength of decayed wood can be predicted by weight loss due to decay. The results of this study indicate that very early stages of brown-rot decay reduce the bending strength significantly. Thus, it is recommended that all load-bearing members in wooden structures, especially those that are periodically wetted, should be inspected regularly to prevent a sudden failure even though there are no definite signs of decay.

  • PDF

Evaluation of Structural Behavior and Serviceability on Transverse Connection for Modular Slab Bridge System (모듈러 슬래브교량의 횡방향 연결부 구조적 거동 및 사용성 평가)

  • Choi, Jin-Woong;Lee, Sang-Seung;Park, Sun-Kyu;Hong, Sung-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.139-146
    • /
    • 2014
  • Recently, in field of bridge construction, modular technology has been studied to reduce construction period, traffic impact and environmental impact. This study is a part of research related to the modular bridges. The aim of the study is to analyze the structural behavior and evaluate a serviceability for transverse connection of modular slab bridge. A total of four specimens were fabricated. including a control beam for finding the maximum load by static test. And one control beam and two segmental beams were fabricated for cyclic loading test. As the test result, the beams that were introduced 100% of the design prestressing force showed a smaller maximum deflection, residual deflection and crack width than the control beam. The beam for serviceability evaluation was satisfied with structural serviceability limits of the deflection and crack.