• Title/Summary/Keyword: Residual granite soil

Search Result 38, Processing Time 0.025 seconds

A Study on Soil-Water Characteristic Curves of Reclaimed Soil and Weathered Granite Soil (준설매립토 및 화강풍화토의 흙-수분 특성곡선에 관한 연구)

  • 신은철;이학주;김환준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.743-750
    • /
    • 2002
  • Unsaturated soil has a possibility to induce a negative pore water pressure. Until now, saturated soil is mainly focused on the research of soil mechanics. Recently, soil mechanics is researched on two major parts such as saturated and unsaturated soil mechanics. Negative pore water pressure has a non-linear relationship with the water content changes. Soil-water characteristic curves of soil in Korea are not determined. There is no proper characteristic value such as air-entry value and residual water content. In this study, the characteristic curves of reclaimed soil, sand, and weathered granite soil were determined by laboratory tests. Air-entry value and residual water content were determined by fitting methods. Soil-water characteristic curves were estimated based on the particle-size distribution and compared with the laboratory test results. The results of soil-water characteristic curves estimation indicated that Fredlund and Wilson's model is excellent for sand and weathered granite soil. Arya and Paris's model is excellent for reclaimed soil.

  • PDF

Analysis of Stress-Strain of Weathered Residual Granite Soil with Variation of the Initial Water Content (초기함수비 변화에 의한 풍화잔류토의 응력-변형률 해석)

  • 김찬기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.2
    • /
    • pp.80-91
    • /
    • 1999
  • This paper presents the stress-strain , volumetric strain characteristics of the Pocheon weathered residual granite soil with variation of the initial water content under drained conditions. A series of consolidated drained triaxial compressiion tests and isotrpc compression tests with various initial water content on specimens were performed. All material parameters of Lade's double work hardening model were determined by using the results of tests. Most aspects of the soil behavior measured in the triaxial compression tests were reproduced with good accuracy by the constitutive model . Therefore double work hardening model has been shown to be applicable to weathered residual granite soil.

  • PDF

The Acid Buffer Capacity of a Horizons in Young Residual Entisols in Korea

  • Zhang, Yong-Seon;Sonn, Yeon-Kyu;Lee, Gye-Jun;Han, Kyung-Hwa;Cho, Hee-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.519-524
    • /
    • 2013
  • pH buffer capacities (pHBC, $cmol_c\;kg^{-1}\;pH^{-1}$) of 6 residual Entisols derived from granite, granite-gneiss, limestone, sandstone, shale, and basalt in Korea were studied. Soil acidity may become a problem if the soil pH is reduced to critical levels when nutrient cycles are unbalanced (especially N, C and S). The relation between the pHBC and the physico-chemical properties of the 6 soils was also studied. In the A horizons of all the soils except Euiseong series developed from sandstone, the contents of clay, organic matter and cation exchange capacity (CEC) were higher than those of C horizon, but bulk density and pH were lower than C horizon. Clay content of Euiseong series decreased with soil depth, which might be caused by the elluviation. The soils developed from granite, granite-gneiss and sandstone have a higher $SiO_2$ content than those developed from basalt and limestone. The contents of $Fe_2O_3$ and MgO were high in the soils from developed from basalt, limestone and shale comparing with the soils from granite, granite-gneiss and sandstone. The soils from basalt and limestone showed higher values of ignition loss than those from the other parent rocks. The pHBC of the soils was ranged from 1.8 to 3.2 $cmol_c\;kg^{-1}\;pH^{-1}$ showing as follows : basalt, limestone > shale, granite-gneiss > granite sandstone.

Investigation into Weathering Degree and Shear Wave Velocity for Decomposed Granite in Hongsung (홍성 지역 화강 풍화 지층에 대한 풍화도 및 전단파 속도 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.360-372
    • /
    • 2005
  • The weathering degree and shear wave velocity, $V_S$, were evaluated for decomposed granite layers in Hongsung, where earthquake damages have occurred. The subsurface geological layers and their $V_S$ profiles were determined, respectively, from boring investigations and seismic tests such as crosshole, downhole and SASW tests. The subsurface layers were composed of 10 to 40 m thickness of weathered residual soil and weathered rock in most sites. In the laboratory, the weathering indexes with depth were estimated based on the results of X-ray fluorescence analysis using samples obtained from field, together with the dynamic soil properties determined from resonant column tests using reconstituted specimens. According to the results, it was examined that most weathering degrees represented such as VR, Li, CIA, MWPI and WIP were decreased with increasing depth with exception of RR and CWI. For weathered residual soils in Hongsung, the $V_S's$ determined from borehole seismic tests were slightly increased with increasing depth, and were similar to those from resonant column tests. Furthermore, the $V_S$ values were independent on the weathering degrees, which were decreased with depth.

  • PDF

The Comparison of Collapsible Characteristics on Decomposed Granite Soil and Loess (풍화 화연토와 loess의 붕괴특성 비교)

  • 도덕현
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 1986
  • The structure of the collapsible soils, such as decomposed granite soil and loess, were examined by the odeometer test, SEM & XES analysis and static & cyclic triaxial test, and hove this structure have influences upon the collapsible behaviour under static and cyclic load was investigated. The study results obtained are as follows; 1. The macropores space of decomposed granite soil (rd=1.50g/cm3) and loess (rd=1.43g/cm3) used in this test were well developed, and showed the behaviour of collapsible soil. 2. Collapsible soil has high resistance on the strain under natural moisture content, however, the resistance on the strain was sharply decreased by the absorption and increasing load since its special structure was destructed. 3. Under the static load, the strain of collapsible soil was high by the viscous flow of the cyclic bonds with time lapse, but Infer the cyclic load, the strain of collapsible soil was low since the tinge needed to destruct the bonding force of clay was not enough. 4. The understanding about the cyclic behaviour of collapsible soil may be helpful to predict the elastic & residual strain of the foundations by the earthquake together with the damage by the additional failure.

  • PDF

Undisturbed Sampler for Characterizing the Behaviour of Weathered Granite Residual Soils (화강풍화토의 거동 특성 규명을 위한 비교란 시료채취기 개발)

  • 정순용;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-24
    • /
    • 1997
  • In Korea, granite is abundant and occupies around two-thirds of the country's ground. Bven though weathered granite residual soils are widely distributed, undisturbed sampling of this soil is extremely difficult because of the particultate structure. This difficulty has kept away the researchers from investigating !he deformational characteristics of weathered granite residual soil. Thus, a special undisturbed sampling device was developed and undisturbed samples were prepared for triaxial compression (TX), resonant column(RC), and torsional shear (75) tests. Local deformation transducer (LDT) was fabricated for internal strain measurements during TX tests. Both undisturbed samples and statically compacted samples of same density were tested by using TX with LDT, RC, and 75 test equipments. The behaviour of statically compacted specimens was almost the same as that of undisturbed samples in the strain ranges below 1 percent. The stiffness and strength decreased with increasing degree of weathering. In case of undisturbed specimens, strains at failure are widely varied from 2 percent to 11 percent, and planes of failure are irrelevant to the angle of internal friction due to the inhomogeneous nature.

  • PDF

Mineralogy and Cheimical Composition of Soils with Relation to the Types of Parent Rocks in the Northern Pusan Area (부산 북부지역의 모암유형에 따른 토양의 구성광물 및 화학성분)

  • 김의선;황진연;김진섭;함세영;김재곤
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.58-72
    • /
    • 2001
  • The Cretaceous granite, andesite and sedimentary rocks are widely distributed in the northern Pusan area. The present study investigates mineralogical and geochemical charateristics of residual and cultivated soils derived from these rocks. The soils of granite area contain a large amount of quartz relative to clay minerals, whereas the soils of the andesite area contain more clay minerals than quartz. Clay minerals consist mainly of kaolin minerals illite hydroxy interlayered vermiculite interstratified mica/vermiculite and chlorite. Kaolin minerals are abundant in paddy soils while illite is abundant in less weathered soils. Si and K are major elements in the soils of granite area while Fe and Al in the soils of andesite area. In all the soils Ca, Mg and Na were generally depleted in comparison to those in parent rocks. Analysis data of trace element show that the enrichment pattern in soils depends on parent rock type with high oncentration of some elements over 100 ppm: Ba and Rb in granite area Zn, Bn, and V in andesite area, and Ba and V in sedimentary rock. In granite area, Rb and Th were greatly enriched in soil than in parent rocks. However, Cr, Ni and Sr commonly decrease, whereas Pb increases in all the soils. Exchangeable cation capacity(CEC) is relatively high in the soils of andesite are including abundant clay minerals. Collective evidences prove that the mineralogical and chemical compositions of soils are strongly dependent on the parent rock type. The mineralogy and chemistry of long cultivated soils are not significantly different from those of residual soils.

  • PDF

Effect of Hysteresis on Soil-Water Characteristic Curve in Weathered Granite and Gneiss Soil Slopes during Rainfall Infiltration (풍화계열 사면의 불포화 함수특성곡선 이력이 강우 침투에 미치는 영향)

  • Shin, Gil-Ho;Park, Seong-Wan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.28-33
    • /
    • 2006
  • Shallow failures of slopes in weathered soils are caused by infiltration due to prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the water infiltration. In this paper, hysteresis on soil-water characteristic curve(SWCC) of granite and gneiss weathered soils are investigated using transient flow analysis respectively. Each case was subjected to artificial rainfall intensities and time duration depending on the laboratory-based drying and wetting processes. The results show that the unsaturated seepage on weathered slopes are very much affected by the initial suction of soils and unsaturated permeability of the soils. In addition, a granite weathered soil has a lower air-entry value, residual matric suction, and wetting front suction and less hysteresis loop than a gneiss weathered soil.

  • PDF

Tensile Strength Characteristics of Compacted Granite Soils with Variation of the Molding Moisture Contents (함수비 변화에 따른 다짐 화강토의 인장강도 특성)

  • Kim, Chan-Kee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.63-70
    • /
    • 2007
  • The soil samples used in this study were prepared with the residual granite soils passed through the #4 sieve and obtained from Pocheon in Gyeonggi-Ki do. Specifically, five types of samples were prepared. Sample A which is a natural state soil was classified as SM according to the uses. Samples of B, C, D, and E were prepared by mixing Sample A with bentonite and were classified as SC according to the uses. The plasticity indexes of samples B, C, D, and E were 15, 25, 30, and 40, respectively. The specimens, whose dimensions are 100mm by 127.5mm, were prepared by A method of ASTM D 698 with the Proctor mold. In experiments, the loading with the 1%/min was applied. Four different disk diameters, 13mm, 26mm, 38mm, and 52mm were used in the Improved Unconfined Penetration (IUP) tests. To compare the tensile strengths, the split tensile tests were also conducted on the same specimens used for the IUP tests. To find out the effects of moisture contents, plasticity Index of specimens on the tensile strength, six different water contents were used for making a specimen.

Evaluation of pesticide residue analysis of dieldrin in soil using a high resolution gas chromatograph/mass spectrometer (HR-GC/MS)

  • Hwang, Jae-Bok;Park, Tae-Seon
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.634-640
    • /
    • 2016
  • The objective of this study was to evaluate the effectiveness of using HR-GC/MS for the rapid screening of dieldrin residues in soils. Persistent organic pollutants (POPs) of organochlorine pesticides such as dieldrin, were analyzed in sedimentary rock and granite rock collected from greenhouses, Niigata, Japan. Dieldrin remains in Japanese farming soils, more than 40 years after their use as insecticides was prohibited. The averages in soil moisture ranged from 2.79% to 7.20% in soils derived from sedimentary rock and from 25.59% to 31.40% in soils derived from granite rock. Mean concentrations of dieldrin residues in sedimentary rock and granite rock were $39.7ng\;g^{-1}$ and $40.51ng\;g^{-1}$, respectively. Dieldrin residue was detected at a slightly higher concentration in granite rock than sedimentary rock samples. There was no consistency between the two soils or between surface and subsurface soils. The coefficients of variation of the two soils were 10.6% and 8.7%, respectively. These results suggest that our high-resolution mass spectrometry detector (HR-GC/MS) is effective at analyzing residual organochlorine pesticides in soil. In order to increase the precision and sensitivity for chemical analysis of POPs, high-resolution gas chromatography coupled with a HR-GC/MS is highly recommended.