• Title/Summary/Keyword: Residual fraction

Search Result 272, Processing Time 0.019 seconds

Effects of Aging on Properties of MgO-Partially Stabilized Zirconia (마그네시아 부분안정화 지르코니아 소결체의 특성에 미치는 열처리 효과)

  • 정형진;오영제;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.243-250
    • /
    • 1987
  • The effects aging on some properties and thermal-shock behavior of zirconia partially stabilized with 9 mol% MgO (9MZ) were studied. 9MZ specimens were aged over $1200^{\circ}$-$1400^{\circ}C$ for 12hours subsequently, after sintering at $1650^{\circ}C$ for 4 hours. Fracture strength(both before and after thermal-shock test), linear thermal expansion, monoclinic fraction and phase transition by XRD, density, galvanic potential and microstructure were measured. Quantitative chemical analysis around the grain-boundary of the specimen aged at $1350^{\circ}C$ was also conducted by EDX. The aging of 9MZ specimen causes a thermal decomposition of cubic-$ZrO^{2}$ into the formation metastable tetragonal-$ZrO^{2}$ and MgO. The former increases the residual strength after thermal-shock test and the latter improves the thermal-shock resistance due to thermal conduction through the continuous magnesia phase and the formation of monoclinic phase content in matrix were increased with decreasing the aging temperature from $1400^{\circ}C$ to $1200^{\circ}C$. Galvanic potential of the aged specimen exhibited a proper emf characteristic.

  • PDF

Phosphorus Fractionations in Sediment of Mankyung and Dongjin River (만경강과 동진강 주요 지점 하천토사 중 형태별 인의 함량)

  • Han, Kang-Wan;Son, Jae-Kwon;Cho, Jae-Young;Kim, Hyo-Kyeong;Hwang, Seon-Ah
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.319-325
    • /
    • 2005
  • Sediments of Mankyung and Dongjin river were examined on the physico-chemical properties and phosphorus fractionations. The content of total-P in sediment of Mankyung river ranged from 290.1 to 405.4 mg/kg (average = 363.4 mg/kg), while that in sediment of Dongjin river ranged from 304.1 to 431.7 mg/kg (average = 353.6 mg/kg). In both rivers, the total-P was highest in June to September. It is presumed that surficial sediment in arable land flowed into the rivers with rainfall-runoff. Phosphorus fractionations in Mankyung and Dongjin river were apatite-P 52.1% and 42.7%, residual-P 27.3% and 34.2%, nonapatite inorganic-P 18.1% and 22.5%, and adsorbed-P 0.6% and 0.6%, respectively. Adsorbed-P in sediment was the most scarcity fraction. It thus appears that adsorbed phosphorus was not effected in aquatic ecosystem. But nonapatite inorganic-P would be highly released under changes of redox condition and pH in aquatic ecosystem.

Pollution and Ecological Risk Assessment of Trace Metals in Surface Sediments of the Ulsan-Onsan Coast (울산-온산연안 표층퇴적물 내 미량금속 오염도 및 생태위해성 평가)

  • Sun, Chul-In;Kim, Dong-Jae;Lee, Yong-Woo;Kim, Seong-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.245-253
    • /
    • 2015
  • Total acid digestion and 1 M HCl extraction methods were used to investigate the pollution status and the degree of ecological risk of trace metals in surface sediments from the Ulsan-Onsan coast. Total concentrations of trace metals (Cu, Cd, Pb, Zn, and Hg) were two-fold higher in surface sediments from Onsan coast than in those from Ulsan coast. The mean labile fractions of the total concentrations of Cd and Pb were 72% and 78%, respectively, indicating a high contribution from anthropogenic sources, whereas Cr, Li, Ni, and As in the residual fraction exceeded 80%, indicating a high contribution from natural sources. According to the results of assessment of trace metal pollution using the sediment quality guidelines in Korea, the concentrations of Cu, Pb, Zn, and Hg were higher than the values of the probable effects level (PEL) at some stations of Onsan coast, and the concentrations of Cr and Ni were lower than the values of the threshold effects level (TEL). The pollution level and ecological risk of the trace metals were analyzed using various indexes (EF, $I_{geo}$, m-PEL-Q, and ERI). Our results showed that the degree of pollution by trace metals (Cu, Cd, Pb, Zn, and Hg) on the Ulsan-Onsan coast was high, and Hg and Cd were the major potential ecological risk factors.

The Extraction Characteristics of Metal-contaminated Soil by Soil Washing (토양세척기법을 이용한 중금속 오염토양 처리에서 중금속 추출특성)

  • Hwang, Seon-Suk;Lee, Noh-Sup;NamKoong, Wan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1072-1080
    • /
    • 2005
  • The extraction characteristics of heavy metals(HM) from a contaminated soil at existing lead smelters were investigated with ethylene diamine tetraacetic acid(EDTA), citrate and HCl as washing solutions. EDTA was more effective for Pb than for other heavy metals. As the mol ratio of EDTA/HM increased, the removal efficiency of heavy metals became higher. When the mol ratio of EDTA/HM approached to 6.5, it removed Pb most effectively. Citrate was effective especially in extracting Zn. The removal efficiency of HCl was comparatively high in almost all heavy metals, and at 0.3N concentration it was the highest. After soil washing process by the use of EDTA, the great part of exchangeable fractions and most of heavy metals of weakly adsorbed like carbonate fraction were extracted. For washing with citrate and HCl, four heavy metals showed the similar exchange of chemical partitioning and the exchangeable fractions of Pb which has weakly adsorbed to soil were more increased than before the process. As removal efficiency of citrate washing process depends upon the distribution of non-detrital fractions, so it can be contended that only the amount of non-detrital fractions could be removed from all the heavy metal content. EDTA and HCl could remove most of non-residual fractions in all heavy metals except Zn. As a result of EDTA washing, toxicity characteristic leaching procedure(TCLP) concentration of the processed soil met the USEPA Pb limit of 5.0 mg/L.

Evaluation of Filter-Adsorber(F/A) Process for Removal of Disinfection By-products(DBPs) (소독부산물 제어를 위한 실공정 F/A 운영에 관한 고찰)

  • Kim, Seong-Su;Lee, Kyung-Hyuk;Lim, Jae-Lim;Chae, Seon-Ha;Kang, Byeong-Soo;Moon, Pil-Joong;Ahn, Hyo-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1035-1042
    • /
    • 2005
  • Granular Activated Carbon(GAC) is widely used in drinking water treatment. At S and B Water Treatment Plant, GAC is used in place of granular media in conventional rapid filters(GAC Filter-Adsorber) for removal of Disinfection By-products(DBPs). The primary focus of this study is on the performance of existing filter-adsorber, and their operation. It was found that F/A process removed turbidity as effective as sand system. The ratio of Hydrophobic DOM (HPO) and hydrophilic DOM (HPI) fraction in the raw water at S and B WTP was similar. Filter Adsorber presented earlier DOC breakthrough and steady state condition which was contributed by biodegradation during operation period. The removal efficiency of DBPs were used to evaluate the filter performance. The DBPs concentration of F/A treated water was below treatment goal level (THM < $80\;{\mu}g/L$, HAA < $60{\mu}g/L$). The removal efficiency of THM decreased rapidly during operation period. However, HAA were removed steadily regardless of the influent concentration of HAA. These results indicate that the removal of THM depend upon the adsorption mechanism while the removal of HAA depend upon biodegradation as well as adsorption. The decrease of adsorption capacity and characteristic value of GAC may be attributed to the effect of high organic loading, residual free chlorine, coagulants, manganese oxidants and frequently backwashing. This study has confirmed that Filter adsorber process can be considered as effective alternatives for the removal of DBPs, especially HAA.

Trace metals in Chun-su Bay sediments (천수만 퇴적물에서 미량금속의 지화학적 특성)

  • Song, Yun-Ho;Choi, Man-Sik;Ahn, Yun-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.169-179
    • /
    • 2011
  • To investigate the controlling factor and accumulation of trace metal concentrations in Chun-su Bay sediments, grain-size, specific surface area, organic carbon content, calcium carbonate content, and concentration of Al, Fe, Na, K, Mg, Ca, Ti, Mn, P, S, Ba, Sr, Li, Co, Cr, Ni, Cu, Zn, As, Cd, Cs, Sc, V, Sn were analyzed. Controlling factors of metals were quartz-dilution, calcium carbonate and coarse sand or K-feldspar. Although the distribution of V, Co, Cr, Ni, Cu, Zn, Sn, and Cd concentration was explained by grain-size effiect, Mn and As showed the similar importance of grain-size effect and coarse sand or K-feldspar factors. By virtue of enrichment factor and 1 M HCl experiment, there were little enrichment in all the trace metals in bay sediments, which were explained well by geochemical properties of sediments. Since the concentration levels of As in coarse sand were high as much as those in fine-grained sediments and it was combined with Mn oxide (1 M HCl leached) and K-feldspar (residual), it was suggested that when the enrichment of As in sediments would be assessed, it is necessary to separate the coarse sand from bulk sediments or to use only sediments with higher than 10% in < $16{\mu}m$ fraction.

Characteristics of PCE Reductive Dechlorination using Benzoate as an Electron Donor (벤조산염을 전자공여체로 이용한 PCE의 환원성 탈염소화 특성)

  • Lee, Il-Su;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.292-299
    • /
    • 2006
  • Batch experiments were performed to evaluate the effects of the electron donor dosage and the initial biomass on the reductive dechlorination of perchloroethene(PCE) with benzoate as an electron donor. When benzoate was added less than the theoretical requirement for dechlorination(electron donor/acceptor ratio=0.5 and 1), the dechlorination efficiency increased from 71% to 94.3% with the increase in benzoate dosage, but the fraction of electron equivalent utilized for dechlorination decreased from 92.7% to 79.6%. Methane production was observed when the hydrogen concentration was higher than the threshold value(10 nM) after PCE and trichloroethene (TCE) were reduced to cis-1,2-dichloroethene(cDCE). When benzoate was added more than the theoretical requirement, the residual hydrogen converted into methane after the completion of dechlorination. The increase in the seeding biomass shortened the lag time for dechlorination, but it did not affect the maximum dechlorination rate as it was mainly governed by the benzoate fermentation rate. When the seeding biomass concentration was high, active dechlorination during the early period increased dechlorination efficiency while decreasing methane production.

Fractionation of DOC and its Correlation to AOX(FP) in the Advanced ater Treatment Process (고도정수처리 공정에서 DOC 분획 특성 및 AOX(FP)와의 관계)

  • Lee, Byung-Cheun;Choi, Kyung-Hee;Choi, Ja-Yoon;Lee, Chul-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.909-918
    • /
    • 2009
  • As a part of dissolved organic matter, dissolved organic carbon (DOC) or biodegradable DOC (BDOC) fraction in particular is one of important issues in water treatment. Due to role as a nutrient source for bacteria, BDOC, therefore, may cause regrowth problems in water distribution system. The main objectives of this study were to investigate the possibility to minimize the concentration of BDOC in advance water treatment process. DOC in water is fractionized into four fractions such as AnBDOC (adsorbable and non-biodegradable DOC) which possesses adsorption properties but no biodegradation ability; nABDOC (biodegradable and non-adsorbable DOC) which has biodegradation properties but no adsorption ability; ABDOC (adsorbable and biodegradable DOC) which has adsorption properties and biodegradable characteristic; and non-removal DOC (nAnBDOC) which do not have either adsorbability or biodegradability. BAC process was effective for adsorbable DOC (AnBDOC+ABDOC) removal. However, in some cases, the removal ratio of adsorbable DOC was not sufficient. BDOC removal rate is very low or irremovable. Thus, for the control of residual DOC, it is necessary to change the operation condition by BAC process. From the analysis results of DOC fractions, water treatment processes appeared to be effective because it could grasp a remarkable amount of biodegradable, adsorbable and non-removal DOC. The concentration of AOX in non-prechlorination process was reduced from 7.1 ${\mu}g$/L to 0.51 ${\mu}g$/L in BAC process followed by ozonation.

Comparison of Pipeline and Clamshell Capping Technologies for the Remediation of Contaminated Marine Sediments (해양 오염퇴적물 정화를 위한 원통관과 클램쉘을 이용한 피복 기술의 비교)

  • Kang, Ku;Hong, Seong-Gu;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.195-206
    • /
    • 2017
  • In situ capping technology for marine sediment pollution control has never been applied in South Korea. In this study a pilot project for the capping was carried out in Busan N Harbor. Pipeline and clamshell capping technologies were implemented for the pollution control. Changes of capping shapes, sediment contamination, and the time and costs required for the two constructions were compared. Both the pipeline and clamshell technologies were found to satisfy the target thickness of 50 cm on average. However, the pipeline method did not operate sensitively in terms of change of the sea floor topography, resulting in an uneven shape and a thickness. Organic carbon and ignition loss quite decreased after the pipeline or the clamshell capping while pH showed no significant change. Organic and residual fraction of Cd, Ni, and Zn in the sediments appeared to decrease after all cappings. The pipeline method took a construction time four times as much as the clamshell method. The clamshell method was demonstrated to reduce the construction cost by about 40% compared with the pipeline method. However, a monitoring for all the parameters needs to be conducted at least two years in order to better evaluate an efficiency of the pollution control by these capping constructions.

Effects of Glucose and Acetic Acid on the Growth of Recombinant E.coli and the Production of Pyruvate Dehydrogenase Complex-E2 Specific Human Monoclonal Antibody (유전자 재조합 대장균의 세포성장과 Pyruvate Dehydrogenase Complex-E2 특이성 인간 모노클론 항체 생산에 대한 포도당과 초산의 영향)

  • 이미숙;전주미;차상훈;정연호
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.482-488
    • /
    • 2000
  • The Fab fraction of PDC-E2 specific human monoclonal antibody was produced using recombinant E. coli, and the effects of glucose and acetate were investigated to develop an optimal strategy for recombinant human antibody production. Higher glucose concentration in the culture media resulted inn higher cell growth and glucose consumption rate, which in turn resulted in an increased acetate production rate. When glucose was depleted, cells began to consume acetate as an energy source, and this consumption rate depended on the glucose concentration. When the residual glucose concentration was high, the accumulation of acetate was accelerated due to an increase in the acetate production rate and a decrease in the acetate consumption rate. Futhermore, it was found that a high accumulation of acetate, accompanied by a high glucose concentration, inhibited human antibody formation; the critical acetate concentration was $0.6g/\ell$. During production, a high glucose concentration enhanced cell growth, but inhibited antibody formation due to catabolic repression. Therefore, it is important to keep the concentration of both glucose and acetate as low as possible to increase antibody production after induction. Accordingly, it is important to accurately control the concentration of glucose and acetate in the culture media to obtain high cell densities and high productivity levels of recombinant human antibody.

  • PDF