• 제목/요약/키워드: Residual Structure

검색결과 1,069건 처리시간 0.028초

광도만에 있어서 물질수송과정의 수치예측

  • 이인철;류청로
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.159-164
    • /
    • 2000
  • In order to clarify the seasonal variation of residual current and material transportation process in Hiroshima Bay, JAPAN, the real-time simulation of residual current and particle tracking by using Euler-Lagrange model were carried out. The calculated tidal current and water temperature and salinity showed good agreement with the observed ones. The residual currents showed the southward flow pattern at the upper layer, and the northward flow pattern at the lower layer. The flow structure of residual current in Hiroshima Bay is an estuarine circulation affected by density flow and wind driven current. The residual current plays an improtant role of material transportation in th bay.

  • PDF

Evaluation of Residual Stresses in 12%-Cr Steel Friction Stir Welds by the Eigenstrain Reconstruction Method

  • Jun, Tea-Sung;Korsunsky, Alexander M.
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.15-22
    • /
    • 2015
  • In the present paper we report the results of a study into Friction Stir Welds (FSWs) made in 13 mm-thick 12%-Cr steel plates. Based on residual strains obtained by diffraction techniques, eigenstrain analysis was performed using the Eigenstrain Reconstruction Method (ERM), which is a novel methodology for the reconstruction of full-field residual strain and stress distributions within engineering components. Significant eigenstrain distributions were found at around Thermo-Mechanically Affected Zone (TMAZ) where the most severe plastic deformation was occurred. Microstructure analysis was used to elucidate this phenomenon showing that the grain structure in TMAZ was bent and not successfully recrystallised, resulting in severe deformation behaviour. The reconstructed residual strain distributions by the ERM agree well with the experimental results. It was found that the approach based on theory of eigenstrain is a powerful basis for reconstructing the full-field residual strain/stress distributions in engineering components and structures.

스테인레스강 용접부의 피로균열 전파속도 예측에 관한 연구 (A Study on the Prediction of Fatigue Crack Growth Rate in Stainless Steel Weldments)

  • 이용복
    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.68-78
    • /
    • 1998
  • Welding structure contains residual stress due to thermal-plastic strain during welding process, and its magnitude and distribution depend on welding conditions. Cracks initiate from various defects of the weldment, propagate and lead to final fracture, The crack initiation and propagation processes are affected by the magnitude and distribution. Therefore, the magnitude and distribution of weldment residual stress should be considered for safety design and service of welding structures. Also it is very important that more accurate assessment method of fatigue crack growth must take into account the redistributing the residual stress quantitively. because the residual stress in weldment has characteristics of its redistribution with loading magnitude, number of cycles and fatigue crack propagation. In this study fatigue crack behavior of STS-304 weldment was investigated during crack propagation into tensile residual stress region or compressive residual stress region. Crack growth rates were predicted and compared with experimental results.

  • PDF

Residual drift analyses of realistic self-centering concrete wall systems

  • Henry, Richard S.;Sritharan, Sri;Ingham, Jason M.
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.409-428
    • /
    • 2016
  • To realise the full benefits of a self-centering seismic resilient system, the designer must ensure that the entire structure does indeed re-center following an earthquake. The idealised flag-shaped hysteresis response that is often used to define the cyclic behaviour of self-centering concrete systems seldom exists and the residual drift of a building subjected to an earthquake is dependent on the realistic cyclic hysteresis response as well as the dynamic loading history. Current methods that are used to ensure that re-centering is achieved during the design of self-centering concrete systems are presented, and a series of cyclic analyses are used to demonstrate the flaws in these current procedures, even when idealised hysteresis models were used. Furthermore, results are presented for 350 time-history analyses that were performed to investigate the expected residual drift of an example self-centering concrete wall system during an earthquake. Based upon the results of these time-history analyses it was concluded that due to dynamic shake-down the residual drifts at the conclusion of the ground motion were significantly less than the maximum possible residual drifts that were observed from the cyclic hysteresis response, and were below acceptable residual drift performance limits established for seismic resilient structures. To estimate the effect of the dynamic shakedown, a residual drift ratio was defined that can be implemented during the design process to ensure that residual drift performance targets are achieved for self-centering concrete wall systems.

후확산 공정 변수가 p+ 실리콘 박막의 잔류 응력 분포에 미치는 영향 (Effects of Drive-in Process Parameters on the Residual Stress Profile of the p+ Silicon Film)

  • 정옥찬;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.245-247
    • /
    • 2002
  • The paper represents the effects of the drive-in process parameters on the residual stress profile of the p+ silicon film. For the quantitative determination of the residual stress profiles, the test samples are doped via the fixed boron diffusion process and four types of the thermal oxidation processes and consecutively etched by the improved process. The residual stress measurement structures with the different thickness are simultaneously fabricated on the same silicon wafer. Since the residual stress profile is not uniform along the direction normal to the surface, the residual stress is assumed to be a polynomial function of the depth. All of the coefficients of the polynomial are determined from the deflections of cantilevers and the displacement of a rotating beam structure. As the drive-in temperature or the drive-in time increases, the boron concentration decreases and the magnitude of the average residual tensile stress decreases. Also, near the surface of the p+ film the residual tensile stress is transformed into the residual compressive stress and its magnitude increases.

  • PDF

Residual Strength Estimation of Decayed Wood by Insect Damage through in Situ Screw Withdrawal Strength and Compression Parallel to the Grain Related to Density

  • OH, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권6호
    • /
    • pp.541-549
    • /
    • 2021
  • This paper reports a method to evaluate the residual strength of insect-damaged radiata pine lumber, such as the screw withdrawal strength as a semi-destructive method and a compression parallel to the grain test to assess the density changes after exposure to outdoor conditions. The screw withdrawal strength test was used as a semi-destructive method to estimate the residual density of decayed lumber. A compression parallel to the grain test was applied to evaluate the residual density. Three variables, such as the screw withdrawal strength, compression parallel to the grain, and residual density, were analyzed statistically to evaluate their relationships. The relationship between the residual density and screw withdrawal strength showed a good correlation, in which the screw withdrawal strength decreased with decreasing density. The other relationship between the residual density and compression parallel to the grain was also positively correlated; the compression parallel to the grain strength decreased with decreasing density. Finally, the correlation between the three variables was statistically significant, and the mutual correlation coefficients showed a strong correlation between the three variables. Hence, these variables are closely correlated. The test results showed that the screw withdrawal strength could be used as a semi-destructive method for an in situ estimation of an existing wood structure. Moreover, the method might approximate the residual density and compression parallel to the grain if supplemented with additional data.

편측성으로 설계된 하악 유리단 국소의치에서 직접유지장치의 설계 변화에 따른 광탄성 응력 분석에 관한 연구 (A PHOTOELASTIC STRESS ANALYSIS IN MANDIBULAR DISTAL EXTENSION REMOVABLE PARTIAL DENTURE DESIGNED UNILATERALLY WITH DIFFERENT DIRECT RETAINERS)

  • 손홍석;계기성
    • 대한치과보철학회지
    • /
    • 제30권1호
    • /
    • pp.25-42
    • /
    • 1992
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from a unilateral distal extention removable partial dentures with five kinds of the direct retainers, that is, the bilaterally designed bar clasp of the cross-arch lingual bar and the unilaterally designed bar clasp, circumferential clasp, mini-Dalbo attachment, and telescope retainer. A photoelastic model for mandible was made of the epoxy resin(PL-1) and hardner (PLH-1) with the acrylic resin teeth used and was coated with plastic cement-1 at the lingual surface of the model, and then five kinds of removable partial dentures were set, A unilateral vertical load of about 16Kg was applied on the first molar and the stress pattern of the photoelastic model under each condition was analyzed by the reflective circular polariscope. The following results were obtained: 1. The conventional removable partial denture with the bilaterally cross arch lingual bar produced the most favorable stress distribution on the residual ridge and supporting structure of abutment teeth than the unilaterally designed removable partial dentures. 2. The unilaterally designed removable partial denture with the bar clasp produced the stress distribution on the residual ridge, except sligtly higher stress concentration on the supporting structure of the abutment teeth, similar to the conventional removable partial denture with the bilaterally designed cross arch lingual bar. 3. On the unilaterally designed removable partial dentures, the bar clasp produced greater stress distribution on the residual ridge and supporting structure of the abutment teeth than the circumferential clasp. 4. On the unilaterally designed removable partial dentures, the mimi-Dalbo attachment produced relatively higher stress concentration on the residual ridge, but produced lesser stress concentration on the supporting structure of the abutment teeth than the other direct retainers. 5. On the unilaterally designed removable partial dentures, the telescope retainer produced uniform stress distribution on the residual ridge, but produced higher stress concentration at the root apex of the terminal abutment tooth than the other direct retainers. 6. On the unilaterally designed removable partial dentures the circumferential clasp and telescope retainer produced slightly higher stress concentration on the residual ridge and supporting structure of the abutment teeth than the bar clasp and mini- Dalbo attachment.

  • PDF

실험적 응력해석의 IITC 방식에 의한 콘크리트 구조물 잔류응력 평가 (Evaluation of Residual Stress using IITC of Experimental Stress Analysis on Concrete Structure)

  • 이호범;한상희;장일영
    • 대한토목학회논문집
    • /
    • 제34권2호
    • /
    • pp.415-424
    • /
    • 2014
  • 기존 콘크리트 구조물 내력은 변위 및 스트레인 게이지를 통해 기지의 가력에 따른 변화량을 계측하고, 그 결과를 수치해석 결과와 비교하여 평가한다. 이는 결과적으로 현존 콘크리트의 잔류응력을 계측 평가하므로써 완성될 수 있다. 본 논문은 실험적 응력해석법의 일환으로 콘크리트 구조물에 대한 잔류응력을 비파괴적인 방식으로 평가하는 IITC (Instrumented Indentation Technique for Concrete) 시스템 개발과 관련된 것으로 콘크리트 구조물 표면에서 압입하중과 압입깊이와의 상관관계를 이용한 실험적 평가방법을 논하였다. 본 연구에서는 구성되는 H/W 및 분석용 S/W는 새롭게 개발하였으며, 다각도의 실험결과를 이용하여 콘크리트 구조물에서의 실험적 잔류응력 추정식을 창출하였고, 자동으로 잔류응력을 평가케 함으로써 콘크리트 구조물의 축성단계에서부터 유지관리 단계에까지 자유롭게 내력을 산정할 수 있도록 하였다.

십자형 용접 시편의 3차원 용접 잔류응력 분포 예측에 관한 연구 (A Study of Predicting 3-dimensional Welding Residual Stresses Distribution for T-joint Fillet Specimen)

  • 유미지;이장현;황세윤;김경수;김성찬
    • Journal of Welding and Joining
    • /
    • 제28권2호
    • /
    • pp.84-90
    • /
    • 2010
  • Fillet welding accounts for about 80% of all constructing process of ship and ocean structure. T-joint is one of the typical shapes which are frequently reported to experience the fatigue damage when the marine structure meets the storm loads. The fatigue damage is affected by the magnitude of residual stresses on the weld. Recently, many shipping registers and design guidances have required that the fatigue strength assessment method should be compensated by the effect of the residual stress in case that the random loading or storm loading is applied to the marine vessels. This study suggests the computational procedure to analyze the residual stresses of T-joint specimen that is frequently reported to get damaged by the storm loading. Experiment by XRD as well as the 3-D computational welding model is presented in order to get the profile of residual stress. Throughout the comparison of experimental result with the computational result, the computational model was validated. Thereafter, characteristics of he residual stresses in the joint are discussed.

종자식물 잔존분열조직으로부터 유관속간형성층의 기원과 발생 (Origin and Development of the Interfascicular Cambium from Residual Meristem in Seed Plants)

  • 소웅영
    • Journal of Plant Biology
    • /
    • 제35권3호
    • /
    • pp.273-281
    • /
    • 1992
  • 잔존분열조직으로부터 유관속간형성층의 기원은 접선 및 횡단면 관찰로 밝힐 수 있다. 전형성층간 및 유관속간 잔존분열조직과 인접 유조직 사이의 구조적인 특징이 분명하게 나타난다. 따라서 잔존분열조직은 유조직으로 전환되지 않고 유관속간형성층의 발생으로 이어진다. 접선면 관찰에서 초기의 유관속간 잔존분열조직의 균일구조는 후기에 점진적으로 비균일구조로 변하는데, 이 경우에 방추형시원세포의 기원이 될 긴세포와 방사조직시원세포의 기원이 될 짧은 세포를 갖추게 된다. 그러나 유관속간잔존분열조직에 인접한 유조직의 균일구조는 비균일구조로 변화되지 않고 발생과정의 전시기에 걸쳐서 균일구조를 유지하게 된다. 그러므로 유관속간형성층은 잔존분열조직과 직접적인 연속성을 갖게 되며, 분화된 유조직으로부터 2차적인 기원을 갖는 것이 아니다. 더욱이 유관속간형성층의 분화유형은 유관속내형성층의 분화유형과 거의 같다.

  • PDF