• Title/Summary/Keyword: Residual Stress Characteristics

Search Result 430, Processing Time 0.023 seconds

A Study on the Effect of Shot Peened Treatments on the Strength of Carburized Gears (침탄치차의 굽힘강도에 미치는 Shot Peening의 효과에 관한 연구)

  • 류성기;전형주;문봉호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.959-963
    • /
    • 1996
  • Hardened layer and compressive residual stress created by carburized treatment effect on bending fatigue strength of gear massively. Also, shot peening treatment improves the strength of carburized gear as it does the hardness and residual stress of surface layer. In these days shot peening techniques are welcomed as one of physical improvement ways around the surface of materials. It is used widely because qualitative analysis of shot peening has become possible and surface treatment can be done with very little costs compared to other surface improvement methods. Therefore this study investigates the effect of shot peening in surface shape and bending fatigue strength after doing many kinds of shot peening treatments, then doing fatigue test and also explained characteristics of shot peening gear.

  • PDF

A Study on the Effect of Shot Peened Treatments on the Strength of Carburized Gears (침탄치차의 굽힘강도에 미치는 Shot Peening의 효과에 관한 연구)

  • LYU, Sung-Ki;JEON, Hyung-Ju;Moon, Bong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.61-67
    • /
    • 1997
  • Hardened layer and compressive residual stress created by carburized treatment effect on bending strength of gear massively. Also, shot peening treatment improves the strength of carburized gear as it does the hardness and residual stress of surface layer. In these days shot peening techniques are welcomed as one of physical improvement ways around the surface of materials. It is used widely because qualitative analysis of shot peening has become possible and surface treatment can be done with very little costs comparaed to other surface improvement methods. Therefore this study investigates the effect of shot peening in surface shape and bending fatigue strength after doing many kinds of shot peening treatments, then doing fatigue test and also explained characteristics of shot peening gear.

  • PDF

Effect of annealing temperature on the optical properties of a bulk GaN substrate

  • Hee Ae Lee;Joo Hyung Lee;Seung Hoon Lee;;Seong Kuk Lee;Nuri Oh;Won Il Park
    • Journal of Ceramic Processing Research
    • /
    • v.21 no.5
    • /
    • pp.609-614
    • /
    • 2020
  • Variation of optical properties in a bulk GaN substrate have experimentally investigated with respect to different annealing conditions of 700 - 1,000 ℃. As-annealed GaN was characterized by scanning electron microscopy, photoluminescence, and Raman spectroscopy. The experimental results demonstrated that the crystallinity and internal residual compressive stress of GaN are most effectively improved when heat-treated at 900 oC for three hours. The optical characteristics were also improved by enhancing the quality of the GaN substrate by decreasing both the defect density and the residual stress. It was also confirmed that the effect of the heat treatment was excellent given that impurities were effectively removed by this process.

A Study on the Corrosion Characteristics of Gear Steel by Shot Peening (쇼트피닝에 의한 기어강의 부식특성에 관한 연구)

  • Kang, Jin-Shik;Kim, Tae-Hyung;Yoon, Jong-Ku;Cheong, Seong-Kyun;Lee, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.216-221
    • /
    • 2001
  • The surface treatment technique to increase corrosion resistance is very important in mechanical components of structures. Therefore, this paper investigates the effects of shot peening on the corrosion resistance of SCM 420steel. The results show that the surface compressive residual stress largely increases, which cause the increase of corrosion resistance.

  • PDF

Design of Zero-Stress Encapsulation for Mechanical Stability of Flexible OLED Displays (유연 OLED 디스플레이의 기계적 안정성을 위한 제로 스트레스 봉지막 설계)

  • Jeong, Eun Gyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2022
  • In this paper, a study was conducted on encapsulation technology for high mechanical stability of flexible displays. First, unlike conventional encapsulation barrier that exclude cracks as much as possible for low water vapor transmission rate (WVTR), mechanical properties were improved by using a defect suppression mechanism introduced with crack arresters. The zero-stress encapsulation barrier optimizes the residual stress of the thin film based to improve the internal mechanical stability. The zero-stress encapsulation barrier was applied to the organic light emitting diodes (OLEDs) to confirm its characteristics and lifetime. Due to improved internal mechanical stability, it has a longer lifetime more than 35% compared to conventional encapsulation technologies. As the zero-stress encapsulation barrier proposed in this study does not require additional deposition process, it is not difficult to apply it. Based on various advantages, it is expected to play an important role in flexible displays.

Control of Processing Conditions for Improvement of vibration Characteristics of Injection Molded Disk (사출성형 디스크의 진동특성 향상을 위한 공정조건 제어)

  • Sin Hyo-Chol;Nam Ji-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.615-621
    • /
    • 2006
  • Increased application of optical disks requires more improved dynamic stability of rotating disks. In this study, a new concept of controlling the processing conditions of injection molded disks was developed to improve vibration characteristics. The critical speed, which shows stiffness and dynamic stability of disk, is affected by the residual stress distribution; this varies as functions of distance from the gate and processing condition. The critical speed of disk was calculated with the initial stress taken into consideration, which was determined from injection molding simulation. Choosing melt temperature, mold temperature, filling speed and packing pressure as design parameters, critical speed is maximized with the method of response surface. It is shown that the stability of injection molded disk has been improved for the new condition obtained as a result of the study proposed.

Study on thermal and UV stability of Liquid Crystal Display for Projection TV Application (프로젝션 TV 적용을 위한 액정 디스플레이의 열적 및 UV 안전성에 관한 연구)

  • Choi, Sung-Ho;Hwang, Jeoung-Yeon;Bae, Yu-Han;Lee, Whee-Won;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.287-288
    • /
    • 2005
  • In this study, we have investigated electro-optical characteristics of thermal and UV stressed TN cells on the rubbed polyimide surface. Mono-domain alignments of thermal stressed TN cells over temperature of liquid crystal isotropic phase were almost same that of no thermal stressed TN cells. Also, threshold voltage and response time of thermal stressed TN cells were same that of no thermal stressed TN cells. Finally, the residual DC voltage of the thermal stressed TN cell on the polyimide surface show decrease of characteristics as increasing thermal stress time. Therefore, thermal stability of TN cell was decreased by high thermal stress for the long times.

  • PDF

Evaluation of Material Characteristics by Micro/Nano Indentation Tests (마이크로/나노 압입시험에 의한 재료특성평가)

  • Lee, Hyung-Yil;Lee, Jin-Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.805-816
    • /
    • 2008
  • The present work reviews the methods to evaluate elastic-plastic material characteristics by indentation tests. Especially the representative stress and strain values used in some papers are critically analyzed. The values should not only represent the load-depth curve, but also represent the whole of deformed material around the impression. We briefly introduce other indentation techniques to evaluate residual stresses, creep properties, and fracture toughness. We also review some technical problems that are related to the accuracy issues in indentation tests.

Torsional Fatigue Characteristics of Aluminum/Composite Co-Cured Shafts with Axial Compressive Preload (축예하중을 가한 알루미늄/복합재료 동시경화 샤프트의 비틀림 피로 특성)

  • Kim, Jong-Woon;Hwang, Hui-Yun;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.183-186
    • /
    • 2003
  • Long shafts for power transmission should transmit torsional load with vibrational stability. Hybrid shafts made of unidirectional fiber-reinforced composite and metal have high fundamental bending natural frequency as well as high torque transmission capability. However, thermal residual stresses due to the coefficient difference of thermal expansion of the composite and metal are developed so that the high residual stresses decrease fatigue resistance of the hybrid shafts, especially at low operating temperatures. In this work, axial compressive preload was given to the shaft in order to change the residual stresses. Static and fatigue torsional tests were performed and correlated with stress analyses with respect to the preload and service temperature.

  • PDF

Properties of a Helical Gear Due to the Manufacturing Process - Forged versus Machined Product (헬리컬기어 제조공정에 따른 특성 비교 -단조품과 기계가공품-)

  • Jung, H.C.;Kang, B.S.;Lee, I.H.;Choi, S.T.;Sin, S.J.;Kang, S.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.67-74
    • /
    • 2012
  • Although high productivity is possible, cold forged helical gears have not been widely used due to difficulty in achieving mechanical properties as well as dimensional accuracy of the product. Confidence in the gear characteristics also is very important in heavy-duty gear applications. Therefore, the properties of forged gears must be compared to the properties of conventional machined gears. The properties might be different due to the different fabrication processes. In this study, machined and forged products both before and after heat-treated have been compared by measuring the residual stress and involute curve of the tooth. Characteristics of hardness and microstructure were also compared. Additionally, tooth fracture strength was compared for the heat-treated products. Moreover, the tooth strength and the fracture pattern were compared between the machined and forged gears. The forged gear showed decreased changes in residual stress and decreased changes in dimensions when compared to the machined gear before and after heat treatment. The forged gear was over 10% better than the machined gear in tooth strength.