• Title/Summary/Keyword: Residual Strain

Search Result 635, Processing Time 0.032 seconds

Residual Stress Evaluation Caused by Press Forming and Welding of 600MPa Class Circular Steel Tube Using Hole-Drilling Strain Gage Method (홀드릴링 변형 게이지법을 이용한 600MPa급 원형 강관 제작상의 잔류응력평가)

  • Im, Sung Woo;Lee, E.T.;Shim, Hyun Ju;Kim, Jong Won;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.625-631
    • /
    • 2006
  • Residual stresses in structural materials are stresses that exist in the objective without the application of any service or other external loads. Manufacturing processes are the most common causes of residual stress. To examine the effect and the distribution of residual stress due to press forming and welding in the production of a 600MPa-class steel tube, a residual stress evaluation test was performed. The measurement used the Hole-Drilling Strain Gauge Method and evaluated the distribution of residual stress, which measured a total of 59 places near the welding line.

Effect of Strain Rate and Material Hardness on Residual Stress in Multiple Impact Shot Peening (다중충돌 쇼트피닝에서 변형률 속도와 소재 경도가 잔류응력에 미치는 영향에 관한 연구)

  • Kim, Tae-Woo;Yang, Zhao-Rui;Na, Doo-Hyun;Lee, Young-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1369-1375
    • /
    • 2011
  • Shot ball impacts to materials cause residual compressive stress on their surfaces. Improving the fatigue strength of a material that has this residual compress stress is the purpose of the shot peening process. A numerical study was performed to evaluate the effect of the strain rate sensitivity and hardness of the shot ball on the residual compressive stress. We calculated the residual compressive stress due to multiple impact shot peening using ABAQUS 6.9-1. AISI 4340 steel was the material used in this study. We compared the effects of high strain rate sensitivities and low strain rate sensitivities and found that when the material's sensitivity to the strain rate increased, the residual compressive stress decreased. In addition, the residual compressive stress of low-hardness material is higher than that of high-hardness material.

Measurement of Residual and Internal Strain of 3-D Braided Hybrid Composite using Embedded FBG Sensor (FBG 센서를 삽입한 3차원 브레이드 하이브리드 복합재료의 잔류변형률 및 내부변형률 측정)

  • Jung, Kyung-Ho;Kim, Don-Gun;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.21-24
    • /
    • 2005
  • Three dimensional circular braided Glass/Aramid hybrid fabric/epoxy resin composite was fabricated. FBG sensor was embedded along the braid yam in order to monitor the internal dimensional changes of the 3-D braid composite. The amount of cure and thermal shrinkage of epoxy resin was also determined using FBG sensor system. FBG sensors with different grating length were embedded and their response were compared. The thermo-optic coefficient of FBG sensor was measured by several preliminary experiments. The internal strain that measured by FBG sensor and electric strain gauge was compared during compressive test. The released residual strain of the fabricated tubular composite was estimated using cutting method. The internal strain of the composite was estimated using FBG sensor system, and the result was compared with the value from electric strain gauge. It was found that FBG sensor system is a very useful technique to investigate inside region of complicated structure.

  • PDF

Anisotropy in Gum and Black Filled SBR and NR Vulcanizates Due to Large Deformation

  • Park, Byung-Ho;G.R. Hamed
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.268-275
    • /
    • 2000
  • After imposing a large pre-strain, anisotropy increases with increasing residual extension ratio. Gums have very low residual extension ratio and exhibit little anisotropy, while black filled SBR and especially sulfur-cured carbon black filled NR have large set and anisotropy. For carbon black filled rubber, samples subjected to tensile loading in perpendicular to the pre-strain direction have the same stress-strain curves shape as the sample without pre-strain (=isotropic samples), but slightly lower modulus. However, compared to isotropic or perpendicular directional samples to pre-strain direction, samples subjected to tensile loading in parallel to the pre-strain direction show low stress at low deformation, but have high stiffness at high deformation. Normalized anisotropy changes with strain. The normalized anisotropy for various deformations is a linear function of residual extension ratio.

  • PDF

Evaluation of Residual Stresses in 12%-Cr Steel Friction Stir Welds by the Eigenstrain Reconstruction Method

  • Jun, Tea-Sung;Korsunsky, Alexander M.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.15-22
    • /
    • 2015
  • In the present paper we report the results of a study into Friction Stir Welds (FSWs) made in 13 mm-thick 12%-Cr steel plates. Based on residual strains obtained by diffraction techniques, eigenstrain analysis was performed using the Eigenstrain Reconstruction Method (ERM), which is a novel methodology for the reconstruction of full-field residual strain and stress distributions within engineering components. Significant eigenstrain distributions were found at around Thermo-Mechanically Affected Zone (TMAZ) where the most severe plastic deformation was occurred. Microstructure analysis was used to elucidate this phenomenon showing that the grain structure in TMAZ was bent and not successfully recrystallised, resulting in severe deformation behaviour. The reconstructed residual strain distributions by the ERM agree well with the experimental results. It was found that the approach based on theory of eigenstrain is a powerful basis for reconstructing the full-field residual strain/stress distributions in engineering components and structures.

A Study on the Mechanical Behavior of Preflex Beam under Different Preflexion Loading Conditions (재하방법에 따른 프리플렉스빔의 역학적 거동에 관한 연구)

  • 방한서;주성민;김규훈;안해영
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.33-37
    • /
    • 2004
  • Since the preflex beam is fabricated by welding, the pre-compressive stresses that should occur over the concrete pier are diminished by the welding residual stresses. For this reason distribution of welding residual stresses must be analyzed accurately and welding residual stresses should be relieved during the fabrication. In this study strain history, displacement of beam and re-distributed welding residual stresses by different loading conditions are measured and compared to choose more appropriate preflex condition.

A Constitutive Model for Polymer-Bonded Explosive Simulants Considering Stress Softening and Residual Strain (응력연화와 잔류변형을 고려한 복합화약 시뮬런트의 구성방정식연구)

  • Yeom, KeeSun;Huh, Hoon;Park, Jungsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.844-852
    • /
    • 2014
  • PBX simulant is known to exhibit highly nonlinear behaviors of deformation such as the stress softening, hysteresis under cyclic loading, residual strain after unloading, and aging. This paper proposes a new pseudo-elastic model for PBX simulant considering stress softening and residual strain. Uniaxial loading and unloading tests at quasi-static states were carried out in order to obtain the mechanical properties of the PBX simulants. And then the Dorfmann-Ogden model is modified to make it consistent with the test result of PBX simulants. Prediction with the new model shows a good correspondence to the experimental data demonstrating that the model properly describes stress softening and residual strain of PBX simulants.

Effect of friction between roll and sample on residual shear strains in AA1050 sheet during asymmetrical rolling (비대칭 압연한 AA1100 판재에서 잔류전단변형에 미치는 롤과 재료간의 마찰의 영향)

  • 지영규;정효태;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.156-158
    • /
    • 2003
  • Sheets of aluminum alloy 1050 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed. The variation of the shear strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced residual shear strain gradients throughout the thickness layers.

  • PDF

A Study on Residual stress at Cutting work (절삭가공시 잔류응력에 관한 연구)

  • 주호윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.111-117
    • /
    • 1997
  • The sudden-stop apparatus is made to measure the residual stress of the infinitesimal area at the turning work surface by using the X-ray stress apparatus. This study is trued to make the cutting work the instantaneous stopping state in the normal working state. The behaviour of work material near the tool is estimated. The estimation method is that the distribution of residual stress can be also measured. The object is to clarify and control the mechanism to leave the adequate stress of the finishing surface. It's beginning is due to observe the occurrence state of the residual stress at the cutting work. The result obtained by this study is as follows. The chips are not separated from the work materials at all the cutting experiments of built-up edges or the shearing areas etc. which can be precisely observed by using the sudden-stop apparatus. The strain of movable system which can be seen at the part of working layer means the size of strain. This experiment proves that the working strain should be lessened to make the size of strain control the residual stress happened at the cutting surface.

  • PDF

Calculation of residual stresses by inherent strain method (고유 변형도법에 의한 잔류응력의 계산)

  • 장창두;서승일
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.36-41
    • /
    • 1989
  • Among various calculation methods for residual stresses, inherent strain method can be useful one for its simplicity. In comparison with finite element method, it is more economical and efficient. First, inherent strain is assumed, and then incompatibility can be calculated from this inherent strain. Based on collocation method, incompatibility equation is solved assuming stress functions which satisfies boundary conditions. Assumed inherent strain can be determined through iterations on the condition that longitudinal residual stress in centerline is yield stress and transverse distortion is the same as predicted one from other method. Calculated results according to this analytic method yield good agreement with experimental ones.

  • PDF