• Title/Summary/Keyword: Residual Mg

Search Result 718, Processing Time 0.023 seconds

EFFECT OF DIETARY PANAX GINSENGS ON THE RATE OF THE BLOOD ETHANOL CLEARANCE (식이성(食餌性) 인삼(人蔘)이 백서혈액(白鼠血液) ethanol의 청소율(淸掃率)에 관(關)한 효과(效果))

  • Chang, Ie-Soo
    • The Journal of Internal Korean Medicine
    • /
    • v.1 no.1
    • /
    • pp.92-97
    • /
    • 1976
  • Upon feeding dried Ginseng to rats of either low-protein or high protein diet ethanol was administered intraperitoneally and disappearance rate blood alcohol was enzymatically measure. In terms of residual blood alcohol after a time lapse of 3.5 hours between intraperitonial administration and blood withdrawal neither ginseng nor ginseng plus 40% casein did improve the rate, of alcohol clearance but sexual difference was clearly demonstrated in favor of female rats. In the case of blood withdrawn only 2 hours after intraperitoneal injection of alcohol, the tendency of female superiority in alcohol clearance rate is demonstrated when a comparison is made among the groups fed with ginseng and this was particularly true is groups of rats fed with basal diet plus 1 percent ginseng residual blood ethanol being 15.4 mg/ml vs. 8.8 mg/ml. Liver homogenate alcohol dehydrogenase activity measured in terms of residual ethanol content after in vitro reaction on which a known amount of alcohol was added clearly demonstrated a male superiority in alcohol clearance.

  • PDF

The Seasonal Variation of Free Chlorine Residuals by Water Supply Distance in Daegu (대구 지역의 계절 변화에 따른 급수관내 잔류염소 농도 거동)

  • Lee, Tae-Gwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.363-369
    • /
    • 2005
  • This paper presents the integrated technique of water quality analysis and Geographic Information System(GIS) for assessing the variation of free chlorine residuals by water temperature and supply distance in Sangri water supply system in Daegu. GIS was utilized for mapping projectmap, extraction of a pipeline route, and supply distance. Free chlorine residual is analyzed every month for appraising the seasonal variation. As a result, free chlorine residuals are affected both water temperature and water supply distance, and it becomes worse as water temperature and water supply distance is increased. To maintain 0.4mg/l of free chlorine residual, initial dose concentration should be over 1.85mg/l in summer.

Characteristics of Micro Floc in a Rapid Mixing Step at Different Coagulant Dose (급속혼화공정에서 응집제 주입률에 따른 미세입자의 성장특성)

  • Jun, Hang-Bae;Park, Sang-Min;Park, Noh-Back;Jung, Kyung-Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.243-252
    • /
    • 2007
  • Effects of alum dosage on the particle growth were investigated by monitoring particle counts in a rapid mixing process. Kaolin was used for turbid water sample and several other chemicals were added to adjust pH and ionic strength. The range of velocity gradient and mixing time applied for rapid mixing were $200{\sim}300sec^{-1}$ and 30~180 sec, respectively. Particle distribution in the synthetic water sample was close to the natural water where their turbidity was same. The number of particles in the range of $10.0{\sim}12.0{\mu}m$ increased rapidly with rapid mixing time at alum dose of 20mg/L, however, the number of $8.0{\sim}9.0{\mu}m$ particles increased at alum dose of 50mg/L. The number of $14.0{\sim}25.0{\mu}m$ particles at alum dose of 20mg/L was 10 times higher than them at alum dose of 50mg/L. Dominant particle growth was monitored at the lower alum dose than the optimum dose from a jar test at an extended rapid mixing time(about 120 sec). The number of $8.0{\sim}14.0{\mu}m$ particles was lower both at a higher alum doses and higher G values. At G value of $200sec^{-1}$ and at alum dose of 10-20mg/L, residual turbidity was lower as the mixing time increased. But at alum dose above 40mg/L and at same G value, lower residual turbidity occurred in a short rapid mixing time. Low residual turbidity at G value of $300sec^{-1}$ occurred both at lower alum doses and at shorter mixing time comparing to the results at G value of $200sec^{-1}$.

Phytotoxicity and Translocation of Residual Diquat Dibromide from Sandy Loam and Loam Soil to Following Crops Cultivating in the Soils

  • Cho, Il Kyu;Kim, Won-Il;Yang, Hae-Ryong;Seol, Jae Ung;Oh, Young Goun;Lee, Dong-gi;Moon, Joon-Kwan;Cho, Woo Young;Kim, Kil Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.260-269
    • /
    • 2021
  • BACKGROUND: Diquat dibromide is a fast-acting nonselective herbicide and plant growth regulator. In this study, in order to understand the possibility of unintentional pesticide contamination in the following crops, the phytotoxicity and transition of diquat dibromide residue in soil into the following crops such as pepper, radish, lettuce and corn have been assessed through phytotoxicity trial and residual evaluation in the unintentional contamination of the higher residual diquat dibromide. METHODS AND RESULTS: The pepper, radish, lettuce and corn were cultivated in the sandy soil and loam soil where the 35 mg/kg and 90 mg/kg diquat dibromide were applied, respectively. Mild growth inhibition symptoms were observed in radish, lettuce and corn crops at the 90 mg/kg- diquat dibromide treatment on the 30 day of cultivation. Diquat dibromide was analyzed using liquid chromatography QTRAP (LC-MS/MS). The recovery rates of diquat dibromide from soil and crop were determined within range from 89.1 to 116.4% with relative standard deviation less than 14.7%. Diquat dibromide residues in soil were found to be 23.90-30.22 and 69.59-82.57 mg/kg from the 35 mg/kg and 90 mg/kg of diquat dibromide-treated soil, respectively after 30 days of crop cultivation. This result implicates that diquat dibromide did not convert to metabolites and remained mostly in the soil, even though it was partially decomposed during crop cultivation. In addition, the diquat dibromide in pepper and radish that were grown for 47 days, and lettuce and corn that were cultivated for 30 days were detected to be 0.01 mg/kg or less in the sandy loam and loam soil where the 90 mg/kg diquat dibromide was applied. CONCLUSION(S): Diquat dibromide did not cause severe phytotoxicity in the following crops as well as it did not uptake and distribute to the following crops, even though it was considered to be residual in the soil.

Simulation for Chlorine Residuals and Effect of Rechlorination in Drinking Water Distribution Systems of Suwon City (수원시 상수관망에서 잔류염소와 재염소주입의 효과 예측)

  • Kim, Kyung-Rok;Lee, Byong-Hi;Yoo, Ho Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.108-116
    • /
    • 2000
  • Chlorine is widely used as a disinfectant in drinking-water systems throughout the world. Chlorine residual was used as an indicator for prediction of water quality in water distribution systems. The variation of chlorine residual in drinking water distribution systems of Suwon city was simulated using EPANET. EPANET is a computerized simulation model which predicts the dynamic hydraulic and water quality behavior within a water distribution system operating over an extended time period. Sampling and analysis were performed to calibrated the computer model in 1999 (Aug. Summer). Water quality variables used in simulations are temperature, roughness coefficient, pipe diameter, pipe length, water demand, velocity and so on. Extended water residence time affected water quality due to the extended reaction time in some areas. All area showed the higher concentration of chlorine residual than 0.2mg/l(standard). So it can be concluded that any area in Suwon city is not in biological regrowth problem. Rechlorination turned out to be an useful method for uniform concentration of free chlorine residual in distribution system. The cost of disinfectant could be saved remarkably by cutting down the initial chlorine concentration to the level which guarantees minimum concentration (0.2mg/l) throughout the distribution system.

  • PDF

Ammonia-nitrogen Removal in Sea Water by Using Electrolysis (전기분해법에 의한 해수내의 암모니아성 질소 제거)

  • 이병헌;이제근;길대수;곽순열
    • Journal of Aquaculture
    • /
    • v.10 no.4
    • /
    • pp.435-438
    • /
    • 1997
  • Biological ammonia removal system have been used conventionally for the seawater fish farming. But this process requires long hydraulic retention times and large area. Also it has a trouble of NO3-N accumulation in the system. Therefore, this study was conducted to find out the feasibility of effective nitrogen removal efficiency in the sea water fish farming system by electolysis. As the result, electrolysis system showed a good ammonia and nitrate nitrogen removal and E. coli sterilization efficiencies. Because of the high salinities in the seawater for electron transfer, electrolysis is an effictive water treatment process for seawater fish farming. The relation among ammonia removal efficiency, hydraulic retention time (HRT) and electric wattage (watt) with 10 mm electrod distance isas follow ; log [$NH_4^$+-N(%)]=0.431log(HRT(sec)$\times$Watt)+0.88(r=0.950) And the relation between ammonia removal efficiency and residual chlorine concentration in the seawater is as follow; $$NH_4^+-N(%)=48\cdotlog[Residual\;chlorine(mg/\ell)+28(r=0.892)$$

  • PDF

Effects of Addition of Perilla Leaf Powder on the Surface Color, Residual Nitrite and Shelf Life of Pork Sausage (들깻잎 분말 첨가가 돈육소시지의 표면색깔, 아질산 잔류량 및 저장성에 미치는 영향)

  • 정인철;김영길;문윤희
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.654-660
    • /
    • 2002
  • This study was carried out to investigate the effect of addition of perilla leaf(PL) powder and carcass grade on the surface color, residual nitrite and shelf-life of pork sausage. Pork sausage was prepared by four type such as grade B pork sausage(A sausage), grade B pork sausage containing perilla leaf(B sausage), grade I pork sausage(C sausage) and grade I pork sausage containing perilla leaf(D sausage) and the surface color, residual nitrite, pH, volatile basic nitrogen(VBN), thiobarbituric acid reactive substances(TBARS) and total bacterial counts of the samples were determined during storage at 4$^{\circ}C$. $L^*$ value of pork sausage showed the highest early stage of storage, pork sausage containing PL was lower than pork sausage without PL. The $a^*$ value of A sausage had the lowest on the storage of 8th week, B sausage had the highest on the storage of 4th week, and the $a^*$ value of C and D sausage were not significantly different during storage. The$a^*$ value of pork sausage containing PL was lower than pork sausage without PL, the $b^*$ value was higher than pork sausage without PL. The residual nitrite of pork sausage containing PL highly decreased until storage for 2 weeks, pork sausage without PL highly decreased until storage for 4 weeks, therefore addition of PL was affected in the reduction of residual nitrite of pork sausage. The pH of A and B sausage decreased until storage at 4 weeks, but increased from 6 weeks. The VBN contents were 6.7~8.4 mg% in the early stage of storage, was 16.1~19.5 mg% on the storage of 8th weeks. The TBARS of pork sausage were increased gradually during storage. Pork sausage containing PL showed lower value than pork sausage non added PL during storage. The total bacterial counts of pork sausage were increased gradually during storage, pork sausage containing PL was lower than that of free PL during storage.

Development of prediction models of chlorine bulk decay coefficient by rechlorination in water distribution network (상수도 공급과정 중 재염소 투입에 따른 잔류염소농도 수체감소계수 예측모델 개발)

  • Jeong, Bobae;Kim, Kibum;Seo, Jeewon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.17-29
    • /
    • 2019
  • This study developed prediction models of chlorine bulk decay coefficient by each condition of water quality, measuring chlorine bulk decay coefficients of the water and water quality by water purification processes. The second-reaction order of chlorine were selected as the optimal reaction order of research area because the decay of chlorine was best represented. Chlorine bulk decay coefficients of the water in conventional processes, advanced processes before rechlorination was respectively $5.9072(mg/L)^{-1}d^{-1}$ and $3.3974(mg/L)^{-1}d^{-1}$, and $1.2522(mg/L)^{-1}d^{-1}$ and $1.1998(mg/L)^{-1}d^{-1}$ after rechlorination. As a result, the reduction of organic material concentration during the retention time has greatly changed the chlorine bulk decay coefficient. All the coefficients of determination were higher than 0.8 in the developed models of the chlorine bulk decay coefficient, considering the drawn chlorine bulk decay coefficient and several parameters of water quality and statistically significant. Thus, it was judged that models that could express the actual values, properly were developed. In the meantime, the chlorine bulk decay coefficient was in proportion to the initial residual chlorine concentration and the concentration of rechlorination; however, it may greatly vary depending on rechlorination. Thus, it is judged that it is necessary to set a plan for the management of residual chlorine concentration after experimentally assessing this change, utilizing the methodology proposed in this study in the actual fields. The prediction models in this study would simulate the reduction of residual chlorine concentration according to the conditions of the operation of water purification plants and the introduction of rechlorination facilities, more reasonably considering water purification process and the time of chlorination. In addition, utilizing the prediction models, the reduction of residual chlorine concentration in the supply areas can be predicted, and it is judged that this can be utilized in setting plans for the management of residual chlorine concentration.

Management of Swimming Pool (수영장 관리)

  • Kim Kyong-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.4 no.1 s.6
    • /
    • pp.37-42
    • /
    • 1989
  • Management of Swimming pool is focused on Swimming pool samitation in relation with chlorination of swimming water and potable water, disposal of waste and excrement within the boundry of swimming pool that may be summerised as follows: 1. Chlorination of Swimming Water Residual chlorine must be kept within the range of $0.4\~0.6 mg/l$ and in case of chloramine should be $0.7\~1.0mg/l$ while swimming pool is in operation 2. Chlorination of potable Water Residual chlorine must be kept within the rangs of $0.2\~04 mg/l$ at all time 3. Disposal of litters must be kept in the water tight waste bin with fitted lid, and waste should not be overflow -out of the bin. When waste in landfilled, the sufficient amount of cover material should be used daily. 4. Disposal of excrement Toilet must be water-flush type. However, The establishment of pit latrine is unavoidable the excrement must be covered with lime or dirt so that excrement should not be exposed to air.

  • PDF

CLPP of Biofilm in Free Chlorine Residual and Monochloramine (유리잔류염소와 모노클로라민에서의 생물막의 CLPP)

  • Lee Dong-Geun
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.147-151
    • /
    • 2005
  • The disinfection effect of free residual chlorine and monochloramine on biofilm communities were investigated by CLPP (community level physiology profile) using Biolog GN plates. Low concentration of disinfectant, $0.5\;mg/\iota$ free chlorine and $1.0\;mg/\iota$ monochloramine, stimulated the growth of bacteria rather than disinfection. Bacterial concentrations were decreased at more than $1.0\;mg/\iota$ of disinfectants. CLPP was different with the type and concentration of disinfectant and sampling time. Common and different carbon sources were actively used with similar bacterial concentration in free chlorine and monochloramine. This represents the differences of bacterial communities with tap water contact times and disinfectant.