• Title/Summary/Keyword: Residual Magnetization

Search Result 45, Processing Time 0.021 seconds

The Crystallographic and Magnetic Properties of $Fe_{0.8}Co_{0.18}(BN_{0.02}$ Synthesized by Heat Treatment and Plastic Deformation ($Fe_{0.8}Co_{0.18}(BN_{0.02}$의 열처리 및 소성변형에 의한 결정구조와 자기적 성질)

  • 김정기;한경훈;이상문;정재윤;김예니;신경호
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.225-231
    • /
    • 2000
  • The crystallographic and magnetic properties of the sample F $e_{0.8}$ $Co_{0.18}$(BN)$_{0.02}$ synthesized by microwave arc-melting with the maximum power of 3.5 kW have been studied by the methods of an X-ray diffraction and the measurement of the magnetic hysteresis using the vibrating sample magnetometer at room temperature. The samples were prepared in a form of pellet pressed under the pressure of 9,000 N/c $m^2$, rolled coldly, and treated with the different temperatures. The X-ray diffraction pattern of pelleted sample shows that the crystal structure of the sample is bcc as same as that of Fe with a good uniformity. The X-ray diffraction pattern shows that a residual stress, which exists in the sample, is eliminated by final 90$0^{\circ}C$ annealing. As rolling rate and heat treatment temperature increases, the saturation magnetization and the remanence of the samples increase whereas the coercivity of the samples shows decrease. Also the saturation magnetization and the remanence of the samples were affected by rolling rate and rolling direction than heat treatment temperature, but the coercivity of the samples was affected by rolling rate and direction as well as heat treatment temperature. This means that a domain wall motion is easy due to elimination of a residual stress and an inclusion which exists in the sample by rolling and heat treatment and a local induced-magnetization easy axis was also formed to parallel to the rolling direction due to creation of the like-atom pairs across the slip plane by rolling......

  • PDF

Microstructure and Magnetic Properties in Fe-Co-B/M Films for Soft Magnetic Underlayer of Perpendicular Magnetic Recording Media (수직자기기록매체용 Fe-Co-B/M 하지연자성층의 미세결정구조 및 자기특성)

  • 공석현;손인환;금민종;최형욱;박용서;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.888-892
    • /
    • 2004
  • It is necessary to develop soft magnetic layer with high saturation magnetization 4 $\pi{M}_s$ and in-plane magnetic anisotropy field Hk for soft magnetic underlayer of perpendicular magnetic recording media with high signal to noise ratio. Fe-Co-B layer with high 4 $\pi$Ms of about 23 kG deposited on Ni-Fe and Ni-Fe/Si seedlayer exhibited very high in-plane magnetic anisotropy filed Hk of about 280 and 380 Oe, respectively, In-plane XRD studies clarified that the lattice spacing of planes along the easy axis direction was longer than that along the hard axis direction in the Fe-Co-B layers with high Hk. These results indicate that high Hk of Fe-Co-B/Ni-Fe and Fe-Co-B/[Ni-Fe/si] layers were resulted from magnetoelastic anisotropy owing to a residual stress. Moreover, the high Hk in the Fe-Co-B/Ni-Fe layer was maintained until 30$0^{\circ}C$ annealing temperature.

Optimum Shape Design of Magnetizing Yoke of 2 Pole PM Motor for Cogging Torque Reduction

  • Koh Chang-Seop;Ryu Jae-Seop;Hong Sun-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.168-172
    • /
    • 2005
  • A novel cogging torque reduction algorithm is presented for 2-pole permanent magnet DC motor. While the shape of the permanent magnet is changed in the conventional method, the pole shape of the magnetizing yoke is optimized in the presented algorithm. In order to parameterize the shape of the yoke, and the distribution of the residual magnetization of the permanent magnet, the Bezier spline is used. The shape of the magnetizing yoke is optimized using the design sensitivity analysis incorporated with the finite element method and Bezier spline.

A Study on the Deperm Protocols Considering Demagnetizing Field of a Ferromagnetic Material

  • Ju, Hye Sun;Won, Hyuk;Chung, Hyun Ju;Park, Gwan Soo
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • Magnetic materials with large coercive force and high squareness ratio are currently developing to meet an industrial demand. Since a ferromagnetic material has hysteresis characteristics, it is hard to demagnetize a ferromagnetic material precisely. In this paper, we describe deperm processes and conduct an analysis of residual magnetization of ferromagnetic material using the Preisach modeling with a two-dimensional finite elements method (FEM). From the results, it was shown that an exponential decrement form of deperm protocol is more efficient than a linear decrement form because of the demagnetizing field in the ferromagnetic material.

Effects of Magnetic Layer Thickness on Magnetic Properties of CoCrPt/Ti/CoZr Perpendicular Media

  • Hwang, M.S.
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.19-22
    • /
    • 2001
  • Change of magnetic properties in CoCrPt/Ti perpendicular media with varying CoCrPt film thickness has been studied. As the CoCrPt film thickness increases from 25 nm, the Ms (saturation magnetization) increases rapidly at first and then more gradually. This Ms behavior is associated primarily with the formation of an "amorphous-like"reacted layer created by intermixing of CoCrPt and Ti at the CoCrPt/Ti interface and secondarily with a change of the Cr segregation mode with varying CoCrPt film thickness. Magnetic domain structure distinctively changes with increasing CsCrPt magnetic layer (ML) thickness. Also the strength of exchange coupling measured from the slope in the demagnetizing region of the M-H loop changes with ML thickness. The expansion of lattice parameters a and c at smaller film thickness suggests that the Cr segregation mode may be connected with the residual stress of the films. Finally, the negative nucleation field (Hn) shows a unique behavior with the change of strength of the exchange interaction.teraction.

  • PDF

Effects of structure and morphology of anodized Al thin film on magnetic properties (알루미늄 양극산화 피막의 구조 및 형상이 자기적 특성에 미치는 영향)

  • 권용덕;박용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.2
    • /
    • pp.45-54
    • /
    • 1993
  • In this study, magnetic properties of anodized Al film deposited with ferro-magnetic metals in the capacity of perpendicular magnetic recording media were measured and evaluated to find out the role of structure and morphology of the oxide films on magnetic characteristics. The object of this work was to present the conditions of magnetic thin film formation with more superior magnetic property. Anodizing was carried out under various conditions, and then the anodized film were electro-deposited with Co, Ni, Fe and their alloys. Coercive force and residual magnetization in perpendicular direction increased as the pore length of anodized film increased. It was attributed to the increase of the amount of depoisted metals and the ratio of length/diameter of pores. Morphology of anodized films in phosperic acid was not similar to that of sulfuric acid, and thin films in the former solution had perpendcular magnetic anisostropy because of large diameter, irregular length and distribution of the pores. It was found that magnetic properties of the thin films, which had doubled layer of two metals, were dominated by the metal electrodeposited on the surface of the anodized oxide films.

  • PDF

MAGNETIC PROPERTIES OF NANOCRYSTALLIZED METALLIC GLASSES AT ELEVATED TEMPERATURES

  • Lachowicz, Henryk K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.589-596
    • /
    • 1995
  • In the present paper some of the magnetic properties of the nanocrystalline Fe-based magnets produced by an appropriate annealing of their metallic glass precursors are reviewed. These properties are discussed on the grounds of their characteristics measured at the elevated temperatures. It is shown that the effective magnetostriction these magnets display, results from the competition among two contributions of the opposite sign originating from the individual magnetic phases, crystalline phase and the residual glassy matrix in which the nanocrystallites are embedded. It is also shown that at certain conditions the magnets considered expose superparamagnetic behavior and that their isothermal magnetization characteristics can successfully be used to calculate the distribution of the particle volumes. Application of the recently invented new genetic algorithm method, a powerful tool to calculate these distributions is, finally, presented.

  • PDF

A study on magnetic layer thickness effects on magnetic properties of CoCrPt/Ti perpendicular media.

  • M. S. Hwang;Lee, T. D.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.369-376
    • /
    • 2000
  • Change of magnetic properties in CoCrPt/Ti perpendicular media with varying CoCrPt films thickness has been studied. As CoCrPt films thickness increase, the Ms(magnetization saturation) drastically increases at thinner thickness and gradually increases with further increase in thickness from 25nm. This Ms behaviour is associated with primarily the formation of "amorphous-like" reacted layer by intermixing of CoCrPt and Ti at CoCrPt/Ti interface and secondarily change of Cr segregation mode with varying the CoCrPt films thickness. Magnetic domain structure distinctively changes with increasing CoCrPt magnetic layer(ML) thickness. Also the strength of exchange coupling measured from the slope in demagnetizing region in M-H loop changes with ML thickness. Details of the above magnetic properties will be discussed. The expansion of lattice parameters a and c at thinner thickness suggests that Cr segregation mode may be connected with the residual stress of the films. Finally, negative nucleation field(Hn) behaviour with the exchange slope will be reported.

  • PDF

Physical Properties of Fe Particles Fine-dispersed in AlN Thin Films (Fe 입자를 미세 분산 시킨 AlN 박막의 물리적 성질)

  • Han, Chang-Suk;Kim, Jang-Woo
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2011
  • This paper describes the fabrication of AlN thin films containing iron and iron nitride particles, and the magnetic and electrical properties of such films. Fe-N-Al alloy films were deposited in Ar and $N_2$ mixtures at ambient temperature using Fe/Al composite targets in a two-facing-target DC sputtering system. X-ray diffraction results showed that the Fe-N-Al films were amorphous, and after annealing for 5 h both AlN and bcc-Fe/bct-$FeN_x$ phases appeared. Structure changes in the $FeN_x$ phases were explained in terms of occupied nitrogen atoms. Electron diffraction and transmission electron microscopy observations revealed that iron and iron nitride particles were randomly dispersed in annealed AlN films. The grain size of magnetic particles ranged from 5 to 20 nm in diameter depending on annealing conditions. The saturation magnetization as a function of the annealing time for the $Fe_{55}N_{20}Al_{25}$ films when annealed at 573, 773 and 873 K. At these temperatures, the amount of iron/iron nitride particles increased with increasing annealing time. An increase in the saturation magnetization is explained qualitatively in terms of the amount of such magnetic particles in the film. The resistivity increased monotonously with decreasing Fe content, being consistent with randomly dispersed iron/iron nitride particles in the AlN film. The coercive force was evaluated to be larger than $6.4{\times}10^3Am^{-1}$ (80 Oe). This large value is ascribed to a residual stress restrained in the ferromagnetic particles, which is considered to be related to the present preparation process.

Anisotropy Control of Highly Magnetostrictive Films by Bias Stress (바이어스 응력에 의한 고자왜 아몰퍼스 박막의 자기이방성 제어)

  • Shin, Kwang-Ho;Kim, Young-Hak;Park, Kyung-Il;Sa-Gong, Geon
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.193-197
    • /
    • 2003
  • To materialize the magnetoelastic devices, such as a highly functional sensor and a signal processing device, using the Fe base amorphous film which has both excellent soft magnetic and magnetostrictive properties, in this study, a new method to control the magnetic anisotropy of a highly magnetostrictive film using bias stress has been proposed and tested. The film pattern, which was stressed by its substrate bending, was subjected to annealing for relieving its stress. Successively, the compressive stress occurred by flattening the substrate was formed in the pattern. With the introduction of the residual compressive stress, the magnetization of the film pattern was aligned in the transverse direction through magnetoelasic coupling. The magnetic domain structure and magnetization curve of the film pattern of which magnetic anisotropy was controlled by the proposed method were presented to verify the availability of the method.