• Title/Summary/Keyword: Residual Magnetism

Search Result 16, Processing Time 0.023 seconds

Danamic Characteristics of Percentage Differential Relays Considering Saturation Effect (포화현상을 고려한 비율차동계전기의 동특성 해석)

  • Kim, Nam-Ho;Kim, Il-Nam;Lee, Juhn-Chang
    • Journal of Industrial Technology
    • /
    • v.14
    • /
    • pp.89-100
    • /
    • 1994
  • The effects of transient inrush currents on the dynamic characteristics of percentage differential relays are studied when the power transformers are reenergized. An algorithm of estimation the nonlinear magnetic property of power transformer and current trnasformer core are developed. Using this method, we can analyze the effect of inrush currents on the trip region of the percentage differential relays corresponding to the variation of the phase angle and the residual magnetism at the instant of switch closing. Test results are used to verify the availibility of the proposed algorithm. Finally a case study is performed to the 110 MVA main transformer in hydraulic power station.

  • PDF

Archaeomagnetic Dating of a Layer of Baked Earth on Daegu Buinsa Site (대구 부인사 유적 소토층의 고고지자기 연대)

  • Sung, Hyong Mi
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.185-192
    • /
    • 2012
  • Issues of chronology on archaeological remains or relics have been a storm-center of controversy when various archaeological researches have been done. Sometimes there is a limit for figuring out issues of chronology by archaeological research. In that case, the field of natural science is often needed to work out issues of chronology. Among various subjects in natural science, archaeomagnetism plays an important role in dating archaeological remains for baked earth bearing relics. In particular, archaeomagnetism is of use for sites where directly excavated dating proxy is unavailable. Terrestrial magnetism changes along with the passage of time and leaves trace by many kinds of residual magnetization which could be called fossil of terrestrial magnetism. Archaeomagnetic dating method is used to assign a date to the archaeological remains in which baked earth is found by measuring the changes of terrestrial magnetism through the thermal remanent magnetization retained in baked earth. This study aims to constrain the age of fire at Buinsa, Daege, Korea using 27 samples that were collected from a layer of baked earth. Buinsa is famous for the place where kept the first edition of Tripitaka Koreana, which was lost in fire at the second invasion of mongolia. In addition, there is a record that there was revolt around this region in A.D.1203. According to archaeomagnetic dating, ages of A.D.1150~1200 and A.D.1130~1210 were assigned for the two building sites in Buinsa, respectively. To this end, it can be concluded that the layer of baked earth on the two building sites in Buinsa recorded the vestige of fire caused by revolt.

Magnetism in Fe-implanted ZnO

  • Heo, Y.W.;Kelly, J.;Norton, D.P.;Hebard, A.F.;Pearton, S.J.;Zavada, J.M.;Park, Y.D.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.4
    • /
    • pp.312-317
    • /
    • 2004
  • High dose ($3{\times}10^{16}cm^{-2}$) implantation of Fe or Ni ions into bulk, single-crystal ZnO substrates was carried out at substrate temperature of ${\sim}350^{\circ}C$ to avoid amorphization of the implanted region. The samples were subsequently annealed at $700^{\circ}C$ to repair some of the residual implant damage. X-Ray Diffraction did not show any evidence of secondary phase formation in the ZnO. The Ni implanted samples remained paramagnetic but the Fe-implanted ZnO showed evidence of ferromagnetism with an approximate Curie temperature of ${\sim}$240K. Preliminary X-Ray Photoelectron Spectroscopy measurements showed the Fe to be ill the 2+ oxidation state. The earrler density in the implanted region still appears to be too low to support carrier-meditated origin of the ferromagnetism and formation of bound magnetic polarons may be one potential explanation for the observed magnetic properties, No evidence of the Anomalous Hall Effect could be found in the Fe-implanted ZnO, but its transport properties were dominated by the conventional or ordinary Hall effect.

Phase Evolution Behavior of Multiferroic (Bi,Nd)(Fe,Ti)$O_3$ Ceramics and Thin Films ((Bi,Nd)(Fe,Ti)$O_3$ 다강체 세라믹 및 박막의 상변화 거동)

  • Kim, Kyung-Man;Yang, Pan;Lee, Jai-Yeoul;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.231-232
    • /
    • 2008
  • The coupling between electric, magnetic, and structural order parameters results in the so-called multiferroics, which possess ferroelectricity, ferromagnetism, and/or ferroelasticity. The simultaneous ferroelectricity and ferromagnetism (magnetoelectricity) allow potential applications in information storage, spintronics, and in magnetic or electric field sensors. Perovskite compound $BiFeO_3$ (BFO) is antiferromagnetic below Neel temperature of 647K and ferroelectric with a high Curie temperature of 1043K. It exhibits weak magnetism at room temperature(RT) due to the residual moment from a canted spin structure. It is likely that non-stoichiometry and second-phase formation are the factors which cause leakage in BFO. It has been suggested that oxygen non-stoichiometry leads to valence fluctuations of Fe ions in BFO, resulting in high conductivity. To reduce the large leakage current of BFO, one attempt is fabricating donor doped BFO compounds and thin films. We report here the successful fabrication of the Nd, Ti co-doped $BiFeO_3$ ceramics and thin films by pulsed laser deposition technique.

  • PDF

Ultrahigh Vacuum Technologies Developed for a Large Aluminum Accelerator Vacuum System

  • Hsiung, G.Y.;Chang, C.C.;Yang, Y.C.;Chang, C.H.;Hsueh, H.P.;Hsu, S.N.;Chen, J.R.
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.309-316
    • /
    • 2014
  • A large particle accelerator requires an ultrahigh vacuum (UHV) system of average pressure under $1{\times}10^{-7}$ Pa for mitigating the impact of beam scattering from the residual gas molecules. The surface inside the beam ducts should be controlled with an extremely low thermal outgassing rate under $1{\times}10^{-9}Pa{\cdot}m^3/(s{\cdot}m^2)$ for the sake of the insufficient pumping speed. To fulfil the requirements, the aluminum alloys were adopted as the materials of the beam ducts for large accelerator that thanks to the good features of higher thermal conductivity, non-radioactivity, non-magnetism, precise machining capability, et al. To put the aluminum into the large accelerator vacuum systems, several key technologies have been developed will be introduced. The concepts contain the precise computer numerical control (CNC) machining process for the large aluminum ducts and parts in pure alcohol and in an oil-free environment, surface cleaning with ozonized water, stringent welding process control manually or automatically to form a large sector of aluminum ducts, ex-situ baking process to reach UHV and sealed for transportation and installation, UHV pumping with the sputtering ion pumps and the non-evaporable getters (NEG), et al. The developed UHV technologies have been applied to the 3 GeV Taiwan Photon Source (TPS) and revealed good results as the expectation. The problems of leakage encountered during the assembling were most associated with the vacuum baking which result in the consequent trouble shootings and more times of baking. Then the installation of the well-sealed UHV systems is recommended.

Phase Evolution Behavior of (Bi,Nd)(Fe,Ti)$O_3$ Ceramics and Thin Films

  • Kim, Kyung-Man;Byun, Seung-Hyun;Yang, Pan;Lee, Yoon-Ho;Lee, Jai-Yeoul;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.331-332
    • /
    • 2008
  • Couplings between electric, magnetic, and structural order parameters result in the so-called multiferroic phenomena with two or more ferroic phenomena such as ferroelectricity, ferromagnetism, or ferroelasticity. The simultaneous ferroelectricity and ferromagnetism (magnetoelectricity) permits potential applications in information storage, spintronics, and magnetic or electric field sensors. The perovskite BiFeO3(BFO) is known to be antiferromagnetic below the Neel temperature of 647K and ferroelectric with a high Curie temperature of 1043K. It exhibits weak magnetism at room temperature due to the residual moment from a canted spin structure. It is likely that non-stoichiometry and second-phase formation are the factors responsible for leakage current in BFO. It has been suggested that oxygen non-stoichiometry leads to valence fluctuations of Fe ions in BFO, resulting in high conductivity. To reduce the large leakage current of BFO, one attempt is to make donor-doped BFO compounds and thin films. In this study, (Bi1-x,Ndx)(Fe1-y,Tiy)O3 thin films have been deposited on Pt(111)/TiO2/SiO2/Si substrates by pulsed laser deposition. The effect of dopants on the phase evolution and surface morphology are analyzed. Furthermore, electrical and magnetic properties are measured and their coupling characteristics are discussed.

  • PDF