• 제목/요약/키워드: Residual Aluminum

검색결과 174건 처리시간 0.034초

저항점용접(抵抗點熔接)에 따른 과도적(過渡的) 냉각(冷却) 온도이력(溫度履歷) (Transient Temperature Drstributions in a Adiabatic Plate Due to Resistance Spot Welding)

  • 김효철
    • 대한조선학회지
    • /
    • 제9권1호
    • /
    • pp.15-20
    • /
    • 1972
  • As the technique of resistance spot welding became more and more advanced the factors hitherto considered secondary become more and more important. Among these factors the distribution of heat and temperature during resistance spot welding is particularly important in conjunction with thermal stress, strain and residual stress, strain problems. The analytical investigations upon the transient temperature due to resistance spot welding were made for the carbon steel plate and aluminum alloy plate. The numerical values obtained by the analytical investigation are nearly identical with the temperature distribution which obtained by D.J. Sullivan and some other experimental data. It was thought therefore useful to estimate the heat effect upon the material such as a residual stress and strain, metalurgical change, change in physical properties and etc.

  • PDF

피로균열 개폐구거동의 미시적 모델에 관한 연구 (A Study on the Microscopic Model for Fatigue Crack Closure Behavior)

  • 오세욱;강상훈
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.81-87
    • /
    • 1990
  • Fatigue crack closure levels based on the behavior of residual displacements on crack surfaces, are determined analytically according to the microscopic crack closure mechanisms, i.e., whether the first contact of crack surfaces takes place at the very crack tip or on the surfaces near the tip. The comparative analysis on the two models is carried out empirically by the constant amplitude fatigue tests on 2024-T3 aluminum alloy plate, and it shows that under negative stress ratio, the case of the first contact at crack tip gives better agreement with the experimental results than the other.

  • PDF

피로균열 개폐구거동의 미시적 모델에 관한 연구 (A Study on the Microscopic Model for Fatigue Crack Closure Behavior)

  • 오세욱;강상훈
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.87-87
    • /
    • 1990
  • Fatigue crack closure levels based on the behavior of residual displacements on crack surfaces, are determined analytically according to the microscopic crack closure mechanisms, i.e., whether the first contact of crack surfaces takes place at the very crack tip or on the surfaces near the tip. The comparative analysis on the two models is carried out empirically by the constant amplitude fatigue tests on 2024-T3 aluminum alloy plate, and it shows that under negative stress ratio, the case of the first contact at crack tip gives better agreement with the experimental results than the other.

C-axis Orientation and Growth Structure of AIN Thin Films on $SiO_2$/Si Substrates Deposited by Reactive RF Magnetron Sputtering

  • Joo, Han-Yong;Lee, Jae-Bin;Kim, Hyeong-Joon
    • The Korean Journal of Ceramics
    • /
    • 제3권4호
    • /
    • pp.257-262
    • /
    • 1997
  • Aluminum nitride(AIN) thin films were deposited on SiO$_2$/Si substrates by reactive sputtering for the application of SAW devices. The major deposition parameters such as pressure, nitrogen fraction, rf power, substrate distance were changed to find out the optimal condition for c-axis oriented thin films on an amorphous substrate. The effects of deposition parameters on the crystal structure, residual stress, and growth morphology of thin films were characterized by XRD, SEM, and TEM. The FWHM of (002) rocking curve of the films deposited at the proper condition was lower than 2.2$^{\circ}$(C=0.93$^{\circ}$). Cross-sectional TEM showed that self-aligned structure was developed just after slightly random growth at the initial stage. The frequency characteristics of test device fabricated from AIN thin films confirmed their piezoelectric property and applicability for SAW devices.

  • PDF

IC 칩 패키지용 PECVD 실리콘 질화막에 관한 연구 (A Study on PECVD Silicon Nitride Thin Films for IC Chip Packaging)

  • 조명찬;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.220-223
    • /
    • 1996
  • Mechanical properties of Plasma-Enhanced Chemical Vapor Deposited (PECVD) silicon nitride thin film was studied to determine the feasibility of the film as a passivation layer over the aluminum bonding areas of integrated circuit chips. Ultimate strain of the films in thicknesses of about 5 k${\AA}$ was measured using four-point bending method. The ultimate strain of these films was constant at about 0.2% regardless of residual stress. Intrinsic and residual stresses of these films were measured and compared with thermal shock and cycling test results. Comparison of the results showed that more tensile films were more susceptible to crack- induced failure.

  • PDF

링압인을 이용한 피로균열의 성장지연효과 (Fatigue Crack Growth Retardation Using Ring Indentation)

  • 임원균;송정훈
    • 한국항공우주학회지
    • /
    • 제31권10호
    • /
    • pp.27-33
    • /
    • 2003
  • 균열주위에 링압인을 부가함으로서 피로균열을 지연하는 수법을 제시하였다. 균열주위의 잔류응력분포는 Bueckner가중함수를 이용한 파괴역학적 수법으로 평가하였다. 본 연구는 균열을 가진 재료에 대한 파단시까지의 피로수명을 향상시키기 위한 단순하면서도 표과적인 수법을 개발하는데 있다. 알루미늄재료에 대한 피로실험결과 본 수법이 피로지연효과를 효율적으로 얻을 수 있는 것으로 나타났다.

주조 금속 표면과 열 중합 수지 표면간의 결합 강도에 관한 연구 (A STUDY ON THE BOND STRENGTH OF HEAT-CURING ACRYIC RESIN BONDED TO A SURFACE OF CASTED ALLOY)

  • 이용석;장익태
    • 대한치과보철학회지
    • /
    • 제34권3호
    • /
    • pp.620-631
    • /
    • 1996
  • Bonding of resin to cast alloy has traditionally been provided by mechanical retention. But, chemical bonding methods such as silicoating, tin plating, heat treatment, application of 4-META adhesives, have been developed to overcome the problems of the mechanical bonding methods. Silicoating has been used availaby in fixed prosthodontics, but is also reported to be used in removable prosthodontics. The aim of this study is to measure the tensile bond strength between resin and metal, and compare the effect of the type of metal and the grain size of the aluminum oxide on the bond strength, after metal surface roughening, coating of the opaque resin, and curing of heat-curing resin were performed. The test groups were divided into 4 groups according to the cast alloys and the aluminum oxide particles used. Group 1 : Type 4 gold alloy(DM66) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 2 : Type 4 gold alloy(DM66) blasted with $$250{\mu}m\;Al_{2}O_3$$, Group 3 : Co-Cr alloy(Nobilium) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 4 : Co-Cr alloy(Nobilium) blasted with $$250{\mu}m\;Al_{2}O_3$$ * 10 test specimens were made on each group. The specimens were thermocycled, and Instron Universal testing machine was used to measure the tensile bond strength of the finished specimens. The results were as follows : 1. Bond strengths showed that the group of gold alloy blasted with $250{\mu}m$ aluminum oxide particle had higher bond strength, and the group of gold alloy blasted with $50{\mu}m$ aluminum oxide particles had lower bond strength than any of the other groups. 2. Gold alloy had significantly higher bond strength when blasted with $250{\mu}m$ aluminum oxide particles than $50{\mu}m$, but. Co-Cr alloy showed no statistically significant difference between the two particle sizes. 3. When blasted with $50{mu}m$ aluminum oxide particles, Co-Cr alloy showed significantly higher bond strength than gold alloy. And, when blasted with $250{\mu}m$ aluminum oxide particles, gold alloy had significantly higher bond strength than Co-Cr alloy. 4. On the examination of the fractured sites, only the group of Co-Cr alloy blasted with $50{\mu}m$ aluminum oxide particles showed a part of residual opaque resin, but all the samples of the other groups fractured between the resin and the metal.

  • PDF

홀 확장된 판재의 에지마진 변화에 따른 피로특성 연구 (A Study on fatigue Properties with Different Edge Margin for Hole Expansion Plate)

  • 이준현;이동석;이환우
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2383-2389
    • /
    • 2002
  • This paper describes an experimental study on fatigue life extension by using cold working process in fastener hole of aircraft structure. Cold working process was applied for A12024-7351 specimens by considering the effect of edge margin on fatigue life. It is generally recognized that cold working process offers a protective zone around fastener hole of aluminum aircraft structure due to the residual compressive stresses which lead to retardation of crack growth. Thus this process provides the beneficial effect of increasing the fatigue life of the component. there by decreasing maintenance costs. It has also been successfully incorporated into damage tolerance and structural integrity programs. Cold working specimens were tested at constant amplitude peak cyclic stresses. Fatigue life of cold working specimen compared with that of specimen fabricated with base material. The increase of fatigue life for cold working specimen is discussed by both considering the effect of residual compressive stresses measured by X-ray diffraction technique and quantitative effect of edge margin.

DURABILITY IMPROVEMENT OF A CYLINDER HEAD IN CONSIDERATION OF MANUFACTURING PROCESS

  • Kim, B.;Chang, H.;Lee, K.;Kim, C.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.243-248
    • /
    • 2007
  • The durability of a cylinder head is influenced by the thermal and mechanical history during the manufacturing process, as well as engine operation. In order to improve the durability of cylinder head, both load from engine operation and the preload conditions from the manufacturing process must be considered. The aluminum cylinder head used for a HSDI diesel engine is investigated to reduce the possibility of high cycle fatigue crack in this study. FE analysis is performed to elucidate the mechanism of high cycle fatigue crack in the HSDI diesel cylinder head. Two separate approaches to increase the durability of the cylinder head are discussed: reducing load from engine operation and re-arranging preload conditions from the manufacturing process at the critical location of the cylinder head. Local design changes of the cylinder head and modification of pretension load in the cylinder head bolt were investigated using FE analysis to relieve load at the critical location during engine operation. Residual stress formed at the critical location during the manufacturing process is measured and heat treatment parameters are changed to re-arrange the distribution of residual stress. Results of FE analysis and experiments showed that thorough consideration of the manufacturing process is necessary to enhance the durability of the cylinder head.