• Title/Summary/Keyword: Residential Power Generation

Search Result 108, Processing Time 0.042 seconds

Power Balancing Control Method of A Residential Distributed Generation System using Photovoltaic Power Generation and Polymer Electrolyte Fuel Cells (PV와 PEFC를 병용한 가정용 분산 전원 시스템의 전력평준화 제어법)

  • Yoon, Young-Byun;Mun, Sang-Pil;Park, Han-Seok;Woo, Kyung-Il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.335-339
    • /
    • 2016
  • Output power in photovoltaic systems changes steeply with the change of the sun intensity. The change of output power has influence on the electric power quality of the system. This paper proposes a residential distributed generation system using photovoltaic power generation and polymer electrolyte fuel cells(hybrid systems). In order to level the output power which changes steeply the polymer electrolyte fuel cells are connected to the photovoltaic power generation system in parallel. Thus the generated power of all the system can be leveled. However, the steep generated power in the photovoltaic power generation system can not be leveled. Therefore, the electric double layer capacitor(EDLC) is connected in parallel with the hybrid systems. It is confirmed by the simulation that the proposed distributed generation system is available for a residential supply.

Operational Optimization of Anodic/cathodic Utilization for a Residential Power Generation System to Improve System Power Efficiency (가정용 연료전지 시스템의 전기 효율 향상을 위한 연료/공기 이용률 운전 최적화)

  • Seok, Donghun;Kim, Minjin;Sohn, Young-Jun;Lee, Jinho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.373-385
    • /
    • 2013
  • To obtain higher power efficiency of Residential Power Generation system(RPG), it is needed to operate system on optimized stoichiometric ratios of fuel and air. Stoichiometric ratios of fuel/air are closely related to efficiency of stack, reformer and power consumption of Balance Of Plant(BOP). In this paper, optimizing stoichiometric ratios of fuel/air are conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. By implementing these optimum values of stoichiometric ratios, power efficiency of the system could be maximized.

Optimization of Anodic/cathodic Utilization for a Residential Power Generation System (가정용 연료전지 시스템의 연료/공기 이용률 최적화)

  • Seok, Donghun;Kim, Minjin;Lee, Jinho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.93.1-93.1
    • /
    • 2011
  • To obtain higher power efficiency of Residential Power Generation System(RPG), it is needed to operate system on optimized stoichiometric ratio of fuel and air. In this paper, optimizing stoichiometric ratio of fuel/air is conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. Using these stoichiometric ratios as decision variables, maximum power efficiency of system could be found. As a result of research, power efficiency of RPG system is improved.

  • PDF

Thermal Management Study of PEMFC for Residential Power Generation (가정용 연료전지 시스템의 열관리 해석)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2839-2844
    • /
    • 2008
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be cope with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. Typically, thermal management of vehicular PEMFC is to reject the heat from the PEMFC to the ambient air. Different from that, the thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, dynamic thermal management system is modeled to understand the response of the thermal management system during dynamic operation. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.

  • PDF

A Study on Renewable Energy Profit-Sharing Method for Improving Residential Conditions in Rural Area - Focused on the Smart Green Village in Cheorwon-gun, Gangwon-do Province - (농촌지역 정주여건 향상을 위한 재생에너지 이익공유 방식에 관한 연구 - 강원도 철원군 스마트그린빌리지를 중심으로 -)

  • Yoo, Byung-Chun;Lee, Dong-Hee;Kim, Jung-Uk
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.1
    • /
    • pp.9-18
    • /
    • 2021
  • In this study, surveys and data collection on new profit-sharing measures were carried out in order to improve the residential environment and residents' participation in 65 MW large-scale solar power complex located at Munhye 5-ri, Galmal-eup, Cheorwon-gun, Gangwon-do province. From May to September 2018, the presentation and meetings for residents were held and a survey for 67 households were carried out in order to collect profit-sharing data which is sharing profits from solar power project improving residential environment. The results of the survey shows that it needs to improve some obstacles of residential environment in rural areas, such as improvement of living infrastructure at village level, improvement of monotonous leisure activities from the residents' point of view, improvement of economic income sources depending on farm income and Basic Old-age Pensions, inconvenience factors in the unsuitable residential environment due to aging. Based on these findings, this paper suggests that Profit-Sharing solar power complex project has possibilities to improve living environment in rural areas by sharing profits from power generation and residents participating in the project with consensus for need of renewable energy.

A Study on Determining an Appropriate Power Trading Contracts to Promote Renewable Energy Systems

  • Choi, Yeon-Ju;Kim, Sung-Yul
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.623-630
    • /
    • 2018
  • The renewable energy systems have been in the spotlight as an alternative for environmental issues. Therefore, the governmental policies are being implemented to spread of promote power generation system using renewable energy in various countries around the world. In addition, Korea has also developed a policy called the power trading contract which can profit from electricity produced from renewable power generation system through Korea Electric Power Corporation (KEPCO) and Korea Power Exchange (KPX). As a result, the power trading contracts can trade power after self-consuming in-house by using small-scale renewable power system for residential customers as well as electricity retailers. The power trading contracts applicable as a small-scale power system have a 'Net metering (NM)' and a 'Power Purchase Agreement (PPA)', and these two types of power trading contracts trade surplus power, but payment method of each power trading is different. The microgrid proposed in this paper is based on grid connected microgrid using Photovoltaic (PV) system and Energy Storage System (ESS), that supplied power to residential demand, we evaluate the operation cost of microgrid by power demand in each power trading contracts and propose the appropriate power trading contracts according to electricity demand.

Effect of Load Modeling on Low Frequency Current Ripple in Fuel Cell Generation Systems

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.307-318
    • /
    • 2010
  • In this work, an accurate analysis of low frequency current ripple in residential fuel cell power generation systems is performed based on the proposed residential load model and its unique operation algorithm. Rather than using a constant dc voltage source, a proton exchange membrane fuel cell (PEMFC) model is implemented in this research so that a system-level analysis considering the fuel cell stack, power conditioning system (PCS), and the actual load is possible. Using the attained results, a comparative study regarding the discrepancies of low frequency current ripple between a simple resistor load and a realistic residential load is performed. The data indicate that the low frequency current ripple of the proposed residential load model is increased by more than a factor of two when compared to the low frequency current ripple of a simple resistor load under identical conditions. Theoretical analysis, simulation data, and experimental results are provided, along with a model of the load usage pattern of low frequency current ripples.

Single-Phase Utility-Interactive Inverter for Residential Fuel Cell Generation System (가정용 연료전지 발전 시스템을 위한 단상 계통연계형 인버터)

  • Jung, Sang-Min;Bae, Young-Sang;Yu, Tae-Sik;Kim, Hyo-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • In this paper, a new single-phase utility-interactive inverter system for residential power generation with fuel cell is proposed. The proposed inverter system is not only capable of working in both stand-alone and grid-connected mode, but also ensures smooth and automatic transfer between the two modes of operation. The proposed control method has little steady-state error and good transient response characteristic. Also, the control method can be implemented using low-cost, fixed point DSP since it has simpler structure, smaller amount of calculation, and smaller number of sensors. The controller for the proposed utility-interactive inverter system is described, and the validity is verified through simulation and experiment.

Residential Solar Cell System by driving of High Efficiency Inverter

  • Kwak Dong-Kurl;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.687-691
    • /
    • 2001
  • With today's global environmental and energy problems, high expectations exist for solar power generation to reduce carbon dioxide generated by the consumption of fossil fuels. On the other hand, power consumption in residential homes is increasing every year. Among the many household appliances, the power demand for air conditioners increases dramatically during the summer, particularly in the afternoons. As this pattern closely matches the output pattern of solar cells, it should be possible to combine a photovoltaic array with an air conditioner to decrease the energy consumption within the home. We have developed a residential solar-powered air conditioner that operates through a combination of photovoltaic array and commercial power. In this paper, the configuration and specification of the residential solar-powered system are described to a novel high efficiency inverter using a ZVCS boost converter. And the performance evaluations of the solar-powered air conditioner are examined by the analysis of a new tracking controller with a maximum power $P_{max}$ detection of solar cell.

  • PDF

An Experimental Study of Short Stack on the Performance of the Proton Exchange Membrane Fuel Cell for the Residential Power generation (소형 모듈 스택을 이용한 가정용 연료전지 성능의 실험적 고찰)

  • Choi, Won-Seok;Kim, Yong-Mo;Yu, Sang-Seok;Lee, Young-Duk;Hong, Dong-Jin;Ahn, Kook-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.21-24
    • /
    • 2008
  • Proton Exchange Membrane Fuel Cell (PEMFC) is an attractive candidate for residential power generator due to fast start-up and stop, high efficiency, low emission, and high power density. In this study, we employ short module stack to understand the performance of the unit cell of the stack in terms of operating temperatures. To simulate the practical fuel cell stack of residential power generator, the structure and active area of the short module stack is kept the same as that of the practical fuel cell. The results shows that the electric potential of short module stack is different from the number of cells times the potential of unit cell because of cell-to-cell variation.

  • PDF