• Title/Summary/Keyword: Reservoirs

Search Result 1,312, Processing Time 0.026 seconds

Analysis of Agricultural Water Distribution Systems for the Utilization of Water-Demand-Oriented Water Supply Systems (물수요 중심 용수공급시스템 활용을 위한 국내 농업용수 공급체계 분석)

  • Lee, Kwang-Ya;Choi, Kyung-Sook
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • This study analyzed agricultural water distribution systems for the utilization of water demand-oriented water supply systems. Three major TM/TC(telemeter/telecontrol) districts of agricultural water management were selected for analyzing the characteristics of the water distribution systems. In addition, the characteristics of the water supply systems for general water supply zones based on irrigation facilities were also investigated, along with the case of special water management during the drought season. As a result, high annual and monthly variations were observed for the water supply facilities, including the reservoirs and pumping stations. In particular, these variations were more obvious during the drought season, depending on the type of facility. The operations of the pumping stations and weirs were more sensitive to the stream levels than the reservoirs, and the smaller reservoirs were influenced more than the larger reservoirs. Therefore, a water-demand-oriented water supply system should consider the existing general practices of water management in the agricultural sector, and focus on achieving a laborsaving system rather than water conservation in the case of reservoirs. Equal water distribution from the start to the end point of irrigation channels could be an effective solution for managing pumping stations.

  • PDF

A Study on the Water Quality Characteristics of the Reservoirs in Gwangju City (광주지역 저수지수 수질특성에 관한 연구)

  • Kim, Dong-Soo;Park, Jong-Whan;Kim, Yun-Hee;Song, Hyung-Myung;Park, Jong-Tae
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1383-1390
    • /
    • 2009
  • This study was performed to investigate the physico-chemical properties and phytoplankton concentration from February to December, 2007 in Gwangju area reservoirs. Water samples from 20 reservoirs were analyze d. As results of the water quality analysis, the average pH was 7.6 and annual pH were 6.3~9.6. The higher pH of 8.6~9.6 were showed from March to August due to eutrophication. Chlorophyll-a concentration ranged from 0.4 to $164.3\;mg/m^3$. The highest chlorophyll-a concentration was observed in August. BOD was correlated with SS, T-N, and Chlorophyll-a(R=0.82, 0.90 and 0.84) respectively. COD was correlated with BOD, SS and Chlorophyll-a(R= 0.89, 0.77 and 0.76) respectively. The T-N/T-P ratios were 4~281, so phosph orus was considered to be the limiting factor in most of points. The trophic state showed eutrophicate states in Gwangju reservoirs. Therefore it was necessary to monitor continuously. In order to monitor the reservoirs, an algae prediction system must be used.

Water Transportation and Stratification Modification in the Andong-Imha Linked Reservoirs System (안동호-임하호 연결에 따른 물 이동과 수온성층 변화)

  • Park, Hyeung-Seok;Chung, Se-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.31-43
    • /
    • 2014
  • Recently, Andong Reservoir and Imha Reservoir located in Nakdong River basin (Korea) are being connected by a tunnel (length 2km, diameter 5.5m) for a conjunctive use. The objectives of this study were to construct a two dimensional(2D) laterally-averaged model for two reservoirs, and examine the effects of connection on the water transportation and temperature stratification in the reservoirs. The 2D models for each reservoir were calibrated using field data obtained in 2006, and applied to the linked system for the year of 2002 when a severe flood intruded into Imha Reservoir during the typhoon Rusa. Simulation results showed that 364 million $m^3$ of water can be conveyed from Imha to Andong, while 291 million $m^3$ of water from Andong to Imha after connection. It resulted in 1.38 m increase of annual averaged water level in Andong Reservoir, whereas 3.75 m decrease in Imha Reservoir. The structures of thermal stratification in both reservoirs were influenced in line with the flow exchanges. In Andong Reservoir, the location of thermocline moved upward about 10 m compared to an independent operation. The results imply that the persistent turbidity issue of Imha Reservoir might be shifted to Andong Reservoir during a severe flood event after connection.

Assessment of Anti-Drought Capacity for Agricultural Reservoirs using RCP Scenarios (RCP 시나리오 기반 농업용 저수지의 내한능력 평가)

  • Park, Na-Young;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.13-24
    • /
    • 2013
  • Agriculture is affected directly by climate conditions and changes, and it is necessary to understand the impact of climate change on agricultural reservoirs which are the main water resources for paddy fields in Korea. This study aimed to evaluate the impact of climate change on the anti-drought capacity including water supply capability (WSC) and drought response ability (DRA) of agricultural reservoirs based on RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios of CanESM2 (The Second Generation Earth System Model) provided by CCCma (Canadian Center for Climate Modeling and Analysis). The WSC and DRA were estimated using frequency analysis and runs theory. The six reservoirs (Yooshin, Nogok, Kumsung, Songgok, Gapyung, Seoma) were selected considering geographical characteristics and design criteria of reservoir capacity. In case of Seoma reservoir, more than 10 year drought return period (DRP), the variation of the WSC was estimated larger than the others. In case of Yooshin reservior (2~5 DRP) DRC was decreased in 2025s under RCP8.5. These results could be utilized for agricultural reservoirs management and future design criteria considering climate change impacts on paddy irrigation.

Long-term Paradigm Analyses of Chlorophyll a and Water Quality in Reservoir Systems

  • Bach, Quang-Dung;Shin, Yong-Sik;Song, Eun-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.432-440
    • /
    • 2009
  • During the period of past fifteen years (1992~2006), variations of chlorophyll a in relation with water quality in freshwater reservoirs were investigated. This study compared total nitrogen (TN), total phosphorus (TP), chlorophyll a, Secchi depth (SD) and total suspended solids (TSS) between terrestrial freshwater reservoir and coastal freshwater reservoir systems based on their location. Regression analyses (linear and non-linear regressions) were applied for all study sites to examine relationship and interaction of these factors in the freshwater systems from in-land to coasts. The results demonstrated that chlorophyll a was significantly correlated to total phosphorus ($R^2=0.94$, P<0.0001) and was remarkably related to TSS increase ($R^2=0.63$, P<0.0001) in the selected reservoirs. The TN : TP ratio in the reservoir systems was higher than Redfield ratio (16 : 1) indicating that the reservoirs are potentially experiencing P limitation. Water quality of coastal freshwater reservoir system was more significantly decreased than the reservoirs located in in-land during the past fifteen years. The strict management of nutrient discharge into freshwater systems should implemented in the coastal reservoirs since the freshwater is introduced into coastal estuarine systems.

Development of Re8ervoirs Storage Management System(RESTOMS) (저수관리 시스템 개발)

  • 김현영;황철상;정건배;정종호유
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.65-72
    • /
    • 1993
  • When a drought occurs in an area irrigated by multi-reservoirs, onerating a single reservoir separately to control the reservoir' storage is not a desirable solution. In order to reduce damages effectively for the areal drought, the storage of the reservoirs within the areal boundary should be managed as a group. Storage management procedures are as follows : 1. Collecting and checking the present storages of all reservoirs 2. Computing the drought frequency and depth; and finally, establishing a suitable storage saving strategy based on the estimated drought depth. For the purpose of this storage management, the RESTOMS(Reservoirs Storage Management System) was developed and the system was composed of the PRIME computer and the ORACLE as a distributed database management system, which was the host computer of Rural Development Corporation and would be on-lined with the regional offices throughout the country. Reservoirs operated by Farm Land Improvment Association were comprised in the DB system. Using the RESTOMS, the drought frequencies and drought depths were calculated with respect to the reservoir storage records(1967 to 1992). It was obvious that the results were closely corresponding to the real drought records.

  • PDF

The Limiting Nutrient of Eutrophication in Reservoirs of Korea and the Suggestion of a Reinforced Phosphorus Standard for Sewage Treatment Effluent (국내 호수의 제한영양소와 하수처리장 방류수 인 기준 강화의 필요성)

  • Kim, Bomchul;Sa, Seung-Hwan;Kim, Moonsook;Lee, Yunkyoung;Kim, Jai-Ku
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.512-517
    • /
    • 2007
  • The limiting nutrient of eutrophication in freshwater bodies in Korea was examined and the phosphorus concentration standard for sewage treatment effluent was discussed. The weight ratio of N/P in 13 major reservoirs showed the range of 18 to 163, which implies phosphorus is more limited than nitrogen for algal growth. In the correlation analysis phosphorus showed higher correlation with chlorophyll-a concentration than with nitrogen. In the algal bioassay phosphorus spike test enhanced algal growth in all 25 samples of five reservoirs, while nitrogen was found to co-limit only in four samples. It confirms that phosphorus is the only limiting nutrient for eutrophication in Korean reservoirs. As many reservoirs are eutrophic in Korea, phosphorus control is critical for the management of water quality. The phosphorus standard of sewage treatment effluent in Korea was compared with other countries, and it can be concluded that phosphorus standard is too high to be effective in eutrophication control and a lower phosphorus standard is essential for the water quality improvement.

Numerical and experimental study on hydrodynamic performance of multi-level OWEC

  • Jungrungruengtaworn, Sirirat;Reabroy, Ratthakrit;Thaweewat, Nonthipat;Hyun, Beom-Soo
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.359-371
    • /
    • 2020
  • The performance of a multi-level overtopping wave energy converter (OWEC) has been numerically and experimentally investigated in a two-dimensional wave tank in order to study the effects of opening width of additional reservoirs. The device is a fixed OWEC consisting of an inclined ramp together with several reservoirs at different levels. A particle-based numerical simulation utilizing the Lattice Boltzmann Method (LBM) is used to simulate the flow behavior around the OWEC. Additionally, an experimental model is also built and tested in a small wave flume in order to validate the numerical results. A comparison in energy captured performance between single-level and multi-level devices has been proposed using the hydraulic efficiency. The enhancement of power capture performance is accomplished by increasing an overtopping flow rate captured by the extra reservoirs. However, a noticeably large opening of the extra reservoirs can result in a reduction in the power efficiency. The overtopping flow behavior into the reservoirs is also presented and discussed. Moreover, the results of hydrodynamic performance are compared with a similar study, of which a similar tendency is achieved. Nevertheless, the LBM simulations consume less computational time in both pre-processing and calculating phases.

Analysis Temporal and Spatial Changes of Water Quality in Domestic Hydropower Dam Reservoirs (국내 수력발전댐 저수지 수질의 시공간 변화 분석)

  • Park, Kyoung-deok;Kang, Dong-hwan;Jo, Won Gi;Yang, Minjune
    • Journal of Environmental Science International
    • /
    • v.31 no.5
    • /
    • pp.373-388
    • /
    • 2022
  • This study analyzed the temporal and spatial characteristics of water quality for five hydropower dam reservoirs in South Korea. Water temperature, pH, dissolved oxygen, and chlorophyll-a (Chl-a) showed high fluctuations in summer and autumn at all reservoirs, indicating the existence of seasonal effects. At all five reservoirs, the concentrations of suspended solids (SS) and total nitrogen (TN) fell under the "slightly bad" category and those of total organic carbon (TOC) fell under the "slightly good" category or higher, according to "the standard for living environment of lake water quality." Variations in the concentration ranges and degrees of change in SS, TN, and TOC among reservoirs were observed, indicating the influences of rainfall, surrounding environments, and seasonal changes. Daecheong and Namgang Dam showed high Chl-a concentrations in summer, indicating that the metabolism of microbial communities, such as algae, was active.

Revision and catagorization of evaluation criteria for state change factors in agricultural reservoirs

  • Jae Woong Shim;Young Hak Lee;Dal Won Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.707-717
    • /
    • 2022
  • As the variability of recent rainfall is increasing, it is becoming important to recognize the possibility of changes in the current reservoir state in advance and to inspect the stability based on accurate evaluation standards. However, the evaluation standards for the state change factors of reservoirs are still not suitable for agricultural reservoirs and thus much improvement is needed. Therefore, in this study, the evaluation criteria for state change factors specialized for small reservoirs were categorized and standards were prepared by considering factors that may cause state changes on the dam crest, upstream slope, and downstream slope of the embankment. The categorized results were configured based on the number of mentions of the precision safety inspection report on major defects in 102 reservoirs and the defect factors found in field investigations. The findings of the study indicated that the current state change standards require many revisions for excessive or unnecessary state change factors in the reservoir. Specifically, the deletion of measurement gauges not applicable to the reservoir, the addition of defects found in the reservoir, and the scope of use of the term were proposed. The results of this study can contribute to efficient system operation and management by improving the deficiencies in the system and introducing a new state change factor.