• Title/Summary/Keyword: Reservoir parameter

Search Result 97, Processing Time 0.023 seconds

Inter-basin water transfer modeling from Seomjin river to Yeongsan river using SWAT (SWAT을 이용한 섬진강에서 영산강으로의 유역간 물이동 모델링)

  • Kim, Yong Won;Lee, Ji Wan;Woo, So Young;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.57-70
    • /
    • 2020
  • This study is to establish the situation of inter-basin transfer from Seomjin river basin to Yeongsan river basin using SWAT (Soil and Water Assessment Tool). Firstly, the SWAT modeling was conducted for each river basin. After, the inter-basin transfer was established using SWAT reservoir operating parameters WURESN (Water Use Reservoir Withdrawn) and inlet function from Juam dam of Seomjin river basin to Gwangju stream of Yeongsan river basin respectively. Each river basin was calibrated and validated using 13 years (2005~2017) data of Seomjin- Juam dam reservoir storage (JAD), release, transfer and Yeongsan-Mareuk (MR) stream gauge station. The results of root mean square error RMSE, Nash-Sutcliffe efficiency NSE, and determination coefficient R2 of JAD were 2.22 mm/day, 0.62 and 0.86 respectively. The RMSE, NSE, and R2 of MR were 1.38 mm/day, 0.69 and 0.84 respectively. To evaluate the downstream effects by the transferred water, the water levels of 2 multi-function weirs (SCW, JSW) in Yeongsan river basin and the Gokseong (GS) and Gurye (GR) stream gauge stations in Seomjin river basin were also calibrated. The RMSE, NSE, and R2 of SCW, JSW, GS and GR were 1.49~2.49 mm/day, 0.45~0.76, 0.81~0.90 respectively.

Identification of Uncertainty on the Reduction of Dead Storage in Soyang Dam Using Bayesian Stochastic Reliability Analysis (Bayesian 추계학적 신뢰도 기법을 이용한 소양강댐 퇴사용량 감소의 불확실성 분석)

  • Lee, Cheol-Eung;Kim, Sang Ug
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.315-326
    • /
    • 2013
  • Despite of the importance on the maintenance of a reservoir storage, relatively few studies have addressed the stochastic reliability analysis including uncertainty on the decrease of the reservoir storage by the sedimentation. Therefore, the stochastic gamma process under the reliability framework is developed and applied to estimate the reduction of the Soyang Dam reservoir storage in this paper. Especially, in the estimation of parameters of the stochastic gamma process, the Bayesian MCMC scheme using informative prior distribution is used to incorporate a wide variety of information related with the sedimentation. The results show that the selected informative prior distribution is reasonable because the uncertainty of the posterior distribution is reduced considerably compared to that of the prior distribution. Also, the range of the expected life time of the dead storage in Soyang Dam reservoir including uncertainty is estimated from 119.3 years to 183.5 years at 5% significance level. Finally, it is suggested that the improvement of the assessment strategy in this study can provide the valuable information to the decision makers who are in charge of the maintenance of a reservoir.

Parameter Sensitivity Analysis for Spatial and Temporal Temperature Simulation in the Hapcheon Dam Reservoir (합천댐 저수지에서의 시공간적 수온모의를 위한 매개변수 민감도 분석)

  • Kim, Boram;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1181-1191
    • /
    • 2013
  • This study have implemented finding the optimal water temperature parameter set for Hapcheon dam reservoir using CE-QUAL-W2 model. In particular the sensitivity analysis was carried out for four water temperature parameters of wind sheltering coefficient (WSC), radiation heat coefficient (BETA), light extinction coefficient (EXH2O), heat exchange coefficient at the channel bed (CBHE). Firstly, WSC, BETA, EXH2O shows relatively high sensitivity in common during April to September, and CBHE does during August to November. Secondly, as a result of identifying depth range of parameter influence, BETA and EXH2O show 0~9 m and 8~14 m which is thermocline layer close to water surface, CBHE is deep layer 12 m away from bottom. Finally, applying annual or monthly optimal parameter sets indicates that the bias between two sets does not show much differences for WSC and CBHE parameters, but BETA and EXH2O parameters show $0.20^{\circ}C$ and $0.51^{\circ}C$ of monthly average biases for two parameter sets. In particular the bias reveals to be $0.4^{\circ}C$ and $1.09^{\circ}C$ during May and August that confirms the necessity of use of monthly parameters during that season. It is claimed that the current operational custom use of annual parameters in calibration of reservoir water quality model requires the improvement of using monthly parameters.

Application of Bayesian Approach to Parameter Estimation of TANK Model: Comparison of MCMC and GLUE Methods (TANK 모형의 매개변수 추정을 위한 베이지안 접근법의 적용: MCMC 및 GLUE 방법의 비교)

  • Kim, Ryoungeun;Won, Jeongeun;Choi, Jeonghyeon;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.300-313
    • /
    • 2020
  • The Bayesian approach can be used to estimate hydrologic model parameters from the prior expert knowledge about the parameter values and the observed data. The purpose of this study was to compare the performance of the two Bayesian methods, the Metropolis-Hastings (MH) algorithm and the Generalized Likelihood Uncertainty Estimation (GLUE) method. These two methods were applied to the TANK model, a hydrological model comprising 13 parameters, to examine the uncertainty of the parameters of the model. The TANK model comprises a combination of multiple reservoir-type virtual vessels with orifice-type outlets and implements a common major hydrological process using the runoff calculations that convert the rainfall to the flow. As a result of the application to the Nam River A watershed, the two Bayesian methods yielded similar flow simulation results even though the parameter estimates obtained by the two methods were of somewhat different values. Both methods ensure the model's prediction accuracy even when the observed flow data available for parameter estimation is limited. However, the prediction accuracy of the model using the MH algorithm yielded slightly better results than that of the GLUE method. The flow duration curve calculated using the limited observed flow data showed that the marginal reliability is secured from the perspective of practical application.

Distribution of BOD Decay Rate in Streams and Reservoirs (국내 수계에서의 BOD분해속도계수 분포)

  • Jang, Changwon;Kim, Donghwan;Lee, Jaeyong;Kim, Yeonju;Jung, Sungmin;Shin, Changmin;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2012
  • BOD decay rate is a key parameter of BOD-DO models in streams and lakes. In the calibration of water quality modeling appropriate range of coefficient is required for guidance of parameter selection. In this study BOD decay rate was measured at 48 stream sites and 10 reservoir sites in 8 different river systems. The decay rate ranged from 0.09 to 0.25 $day^{-1}$ with a mean of 0.16 $day^{-1}$. Among river systems the decay rates showed significantly different ranges, with the Han River system showing higher values than other river systems. In comparing different types of water bodies, the decay rate was slightly higher in tributaries than in reservoirs and mainstreams. Our results can provide guidance to the selection of proper coefficient for various water bodies in the calibration of water quality models.

Numerical analysis of liquid flow characteristics according to the design parameters of a bubble jet microactuator (마이크로 엑츄에이터의 설계변수에 따른 유동특성 해석)

  • Ko, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.605-612
    • /
    • 2016
  • A numerical analysis was performed on the effect of the design parameters of a bubble jet type microactuator on its liquid flow characteristics. The numerical models included the ink flow from the reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of the refilling process. Because the bubble behavior is a very important parameter for the overall actuator performance, the bubble growth and collapse phenomena in an open pool were simulated in the present study. The drop ejection and refill process were numerically predicted for various geometries of the nozzle, chamber, and restrictor of the bubble jet microactuator. The numerical results from varying the design parameters can help with predicting the performance and optimizing the design of a microactuator.

Phosphorus Cycle in a Deep Reservoir in Asian Monsoon Are3 (Lake Soyang, Korea) and the Modeling with a 2-D Hydrodynamic Water Quality Model [CE-QUAL-W2] (아시아 몬순지역의 대형댐(소양호)에서의 인순환과 2차원모델의 적용)

  • Kim, Yoon-Hee;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.205-212
    • /
    • 2004
  • Phosphorus cycle was studied in a deep stratified reservoir in summer monsoon area (Lake Soyang, Korea) by surveying phosphorus input from the watershed and the movement of phosphorus within the reservoir. And the spatial and temporal distribution of phosphorus was modeled with a 2-dimensional water quality model (CE-QUAL-W2), Phosphorus loading was calculated by measuring TP in the main inflowing river (the Soyang River) accounting for 90% of watershed discharge. TP of the Soyang River showed a large daily variation with the flow rate. High phosphorus loading occurred during a few episodic storm runoff laden with suspended sediments and phosphorus. Because storm runoff water on rainy days have lower temperature, it plunges into a depth of same temperature (usually below 20m depth), forming an intermediate turbidity layer with a thickness of 20 ${\sim}$ 30 m. Because of stable thermal stratification in summer the intermediate layer water of high phosphorus content was discharged from the dam through a mid-depth outlet without diffusing into epilimnion. The movement of runoff water within the reservoir, and the subsequent distribution of phosphorus were well simulated by the water quality model showing a good accuracy. The major parameter for the calibration of phosphorus cycle was a settling velocity of detritus, which was calibrated to be 0.75 m ${\cdot}$ $day^{-1}$. It is concluded that the model can be a good simulator of limnological phenomena in reservoirs of summer monsoon area.

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.

A Study on Seepage of the Concrete Dam base (콘크리트댐 저면 침수에 관한 고찰)

  • 정형식;신방웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.1
    • /
    • pp.4071-4078
    • /
    • 1976
  • The authors analyzed the seepage by means of the following mathmatical solutions of the Laplace Equations on the given boundary conditions. The boundaries of the flow region are of two types i) impervious boundaries (${\Phi}$=constant), and ii) reservoir boundaries (${\Phi}$=constant). The corresponding w plane, bounding the flow region, is the rectangle in Fig. 8-a. As the z plane and w plane are both polygons, by means of the Schwarz-Christoffel transformation the flow region in each of these planes can be mapped con for mally onto the same half of an auxiliary t plane, there by yielding, say, the functions z=f1(t) and w=f2(t). Then, either by eliminating the variable t or by using t as a parameter, the function w=f(z) can be established.

  • PDF

A Study on the Influence of Design Parameters on the Automotive Shock Absorber Performance (차량용 충격흡수기의 설계변수에 따른 성능고찰)

  • 이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.167-177
    • /
    • 2003
  • In this study, a mathematical nonlinear dynamic model is introduced to predict the damping force of automotive shock absorber. And 11 design parameters were proposed for the sensitivity analysis of damping force. Design parameters consist of 5 piston valve design parameters, 5 body valve design parameters and 1 initial pressure of reservoir chamber air. All of these design parameters are main design parameters of shock absorber in the procedure of shock absorber design. The simulation results of this paper offer qualitative information of damping force variation according to variation of design parameters. Therefore, simulation results of this paper can be usefully use in the design procedure of shock absorber