• Title/Summary/Keyword: Reservoir Environment

Search Result 851, Processing Time 0.027 seconds

A Modeling Study of Lake Thermal Dynamics and Turbid Current for an Impact Prediction of Dam Reconstruction (댐 재개발이 호수 수온 및 탁수 거동 변화에 미치는 영향 예측을 위한 모델 연구)

  • Jeong, Seon-A;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.813-821
    • /
    • 2005
  • This paper presents a modeling study of thermal dynamics and turbid current in the Obong Lake, Kangreung. The lake formed by the artificial dam in 1983 for agricultural water supply, is currently under consideration of reconstruction in order to expand the volume of reservoir for water supply and flood control in downstream area. The US Army Corps of Engineers' CE-QUAL-W2, a two-dimensional laterally averaged hydrodynamic and water quality model, was applied to the lake after reconstruction as well as the present lake. The model calibration and verification were conducted against surface water levels and temperature of the lake measured during the years of 2001 and 2003. The model results showed a good agreement with fold measurements both in calibration and verification. Utilizing the validated model, an impact of dam reconstruction on vertical temperature and hydrodynamics were predicted. The model results showed that steep temperature gradient between epilimnion and hypolimnion would be formed during summer, along with extension of cold deep water after reconstruction. During winter and spring seasons, however, the vertical temperature profiles was predicted to be quite similar both before and after reconstruction. This results indicated that thermal stratification would become stronger during summer and stay longer after dam reconstruction. From the examination of predicted water movements, it was noticed that the upstream turbid current would infiltrate into the interface between metalimnion and hypolimnion and then suspended solids would slowly settle down to the bottom before reconstruction. After reconstruction, however, it was shown that the upstream turbid current would stay longer in metalimnion with similar density due to strong stratification. The model also predicted that dam reconstruction would make suspended solids near the dam location significantly decrease.

Sea Level Rise Around Jeju Island due to Global Warming and Movement of Groundwater/seawater Interface in the Eastern Part of Jeju Island (지구온난화에 따른 제주도 근해의 해수면 상승과 제주도 동부 지역 지하수의 염수대 변화)

  • Kim, Kyung-Ho;Shin, Ji-Youn;Koh, Eun-Heui;Koh, Gi-Won;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.68-79
    • /
    • 2009
  • Groundwater is the main water resource in Jeju Island because storage of surface water in reservoir is difficult in the island due to the permeable volcanic rocks. Because of this reason, the groundwater is expected to be very vulnerable to seawater intrusion by global warming, which will cause sea level rise. The long term change of mean sea level around the Korean Peninsula including Jeju Island was analyzed for this study. The sea level rise over the past 40 years was estimated to be of $2.16\;{\pm}\;1.71\;mm/yr$ around the Korean Peninsula. However, the rising trend around the eastern part of Jeju Island was more remarkable. In addition, the groundwater/seawater intrusion monitoring network operated by the Jeju Special Self-Governing Province shows that seawater intrusion becomes more prominent during dry 4-5 months in a year when the sea level increases. This implies that the fresh groundwater lens in the eastern part of Jeju Island is influenced by the sea level rise due to global warming in the long term scale.

Assessment of Probability Flood according to the Flow Regulation by Multi-purpose Dams in Han-River Basin (한강유역의 다목적댐 운영에 따른 빈도홍수량의 평가)

  • Kim, Nam-Won;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.2
    • /
    • pp.161-168
    • /
    • 2009
  • The purpose of this study is to evaluate the variation of probability flood according to the flow regulation by multi-purpose dams (Soyang and Chungju) in the Han-river basin, Korea. SWAT-K (Soil and Water Assessment Tool-Korea) was used in order to generate regulated and unregulated daily streamflows upstream of Paldang dam. Simulated flow regulated by the Soyang and Chungju dams was calibrated by comparison with the observed inflow data at Paldang reservoir. Generally the ratio of flood flows to daily streamflows is known to decrease with drainage area in a watershed. Regulated and unregulated flood flows were obtained from the relationship between flood flows and daily streamflows. Extreme Type-I distribution was applied for flood frequency analysis and L-moment method was used for parameter estimation. This is a novel approach capable of understanding the variation in flood frequency with dam operation for the relatively large watershed scale, and this will helps improve the applicability of daily stream flow data for use in flood control as well as in water utilization.

Climate Change Impacts on Forest Ecosystems: Research Status and Challenges in Korea (기후변화에 따른 산림생태계 영향: 우리나라 연구현황과 과제)

  • Lim Jong-Hwan;Shin Joon-Hwan;Lee Don-Koo;Suh Seung-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2006
  • Recent global warming seems to be dramatic and has influenced forest ecosystems. Changes in phonology of biota, species distribution range shift and catastrophic climatic disasters due to recent global warming have been observed during the last century. Korean forests located mainly in the temperate zone also have been experienced climatic change impacts including shifting of leafing and flowering phonology, changes in natural disasters and forest productivity, However, little research has been conducted on the impact of climate change on forest ecosystems in Korea which is essential to assess the impact and extent of adaptation. Also there is a shortage in basic long-term data of forest ecosystem processes. Careful data collection and ecological process modeling should be focused on characteristic Korean forest ecosystems which are largely complex terrain that might have hindered research activities. An integrative ecosystem study which covers forest dynamics, biological diversity, water and carbon flux and cycles in a forest ecosystem and spatial and temporal dynamics modeling is introduced. Global warming effects on Korean forest ecosystems are reviewed. Forestry activity and the importance of forest ecosystems as a dynamic carbon reservoir are discussed. Forest management options and challenges for future research, impact assessment, and preparation of mitigating measures in Korea are proposed.

Characteristics of Fish Fauna and Community Structure in Daecheon Stream in Boryeong, Korea (보령 대천천의 어류상과 어류 군집 특성)

  • Song, Mi-Young;Jung, Seung-Yoon;Kim, Kyung-Hwan;Baek, Jae-Min;Lee, Wan-Ok
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.4
    • /
    • pp.437-448
    • /
    • 2013
  • The ichthyofauna and fish community were studied in Daecheon Stream from April to October 2012. During the survey period a total of 42 species belonging to 13 families were collected. Dominant species by number was Zacco platypus(32.3%) and Tridentiger brevispinis(12.8%). In biomass, the dominant species was Z. platypus(27.7%) and Chelon haematocheilus(11.9%). Also, eight Korean endemic fish species and one endangered species (Rhodeus pseudosericeus) were collected. In addition, two exotic species(Carassius cuvieri and Micropterus salmoides) and migration fish species(Anguila japonica) were observed. Based on the length-weight relationship of Z. platypus, the b value was 3.21~3.29, and the condition factor(K) was 0.89 on average with stable condition. According to similarity analysis, fish communities in Daecheon Stream were divided into three groups; the upper reaches near a reservoir(St. 1), the middle reaches (St. 2 to 4) and the lower reaches near a weir(St. 5). Dominant species at each group were Zacco koreanus(St. 1), Z. platypus(St. 2 to 4) and T. brevispinis(St. 5). This result suggested that artificial structures such as dam and a weir have a marked effect on the distribution of fish communities in Daecheon Stream.

Cyanobacterial Blooms and Water Quality of Major Recreational Park Ponds in the Capital Region (수도권 주요 공원 연못의 수질 특성과 남조류 대발생)

  • Park, Myung-Hwan;Suh, Mi-Yeon;Hwang, Soon-Jin;Kim, Yong-Jae;Han, Myung-Soo;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.54-65
    • /
    • 2008
  • The seasonal dynamics of phytoplankton and water quality were evaluated bimonthly at 7 park ponds in the capital region from October 2004 to August 2005. With out the change of water temperature $(0.4\sim26.0^{\circ}C)$, cyanobacteria dominated in park ponds such as Gyungbokgung Gyunghyaeru and Seokchon reservoir. The standing crops of phytoplankton was significant related with cell densities of cyanobacteria (r=0.993), while they did not significant correlation with environmental factors. Almost of all park ponds in the capital region were classified as eutrophic state with high TP concentrations and TN/TP ratios less than 10. Major dominant cyanobacteria were as followed; Anabaena sp., Aphanocapsa elachista, Lyngbya contorta, Merismopedia elegans, Microcystis aeruginosa, M. wesenbergii, Microcystis sp., Oscillatoria sp., Phormidium tenue, and Plectonema sp. To date, although the concentration of chlorophyll-${\alpha}$ and cyanobacterial densities in the capital region was below the 'danger' level of WHO guidelines value, the monitoring of cyanobacterial densities and its toxin (microcystin) in recreational/bath water should be continued.

A Study on the determination of the optimal resolution for the application of the distributed rainfall-runoff model to the flood forecasting system - focused on Geumho river basin using GRM (분포형 유역유출모형의 홍수예보시스템 적용을 위한 최적해상도 결정에 관한 연구 - GRM 모형을 활용하여 금호강 유역을 중심으로)

  • Kim, Sooyoung;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • The flood forecasting model currently used in Korea calculates the runoff of basin using the lumped rainfall-runoff model and estimates the river level using the river and reservoir routing models. The lumped model assumes homogeneous drainage zones in the basin. Therefore, it can not consider various spatial characteristics in the basin. In addition, the rainfall data used in lumped model also has the same limitation because of using the point scale rainfall data. To overcome the limitations as mentioned above, many researchers have studied to apply the distributed rainfall-runoff model to flood forecasting system. In this study, to apply the Grid-based Rainfall-Runoff Model (GRM) to the Korean flood forecasting system, the optimal resolution is determined by analyzing the difference of the results of the runoff according to the various resolutions. If the grid size is to small, the computation time becomes excessive and it is not suitable for applying to the flood forecasting model. Even if the grid size is too large, it does not fit the purpose of analyzing the spatial distribution by applying the distributed model. As a result of this study, the optimal resolution which satisfies the accuracy of the bsin runoff prediction and the calculation speed suitable for the flood forecasting was proposed. The accuracy of the runoff prediction was analyzed by comparing the Nash-Sutcliffe model efficiency coefficient (NSE). The optimal resolution estimated from this study will be used as basic data for applying the distributed rainfall-runoff model to the flood forecasting system.

Relationship between Grain Size and Organic Carbon Content of Surface Sediments in the Major Estuarine Areas of Korea (국내 주요 하구역 표층퇴적물의 입도와 유기탄소 함량 관계)

  • BOO-KEUN KHIM;JU-YEON YANG;HYUK CHOI;KWANGKYU PARK;KYUNG HOON SHIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.158-177
    • /
    • 2023
  • An estuary is a transitional water area that links the land and sea through rivers and streams, transporting various components from the land to the sea, which plays an important role in determining primary productivity in the coastal environment, and this coastal ecosystem captures a huge amount of carbon into biomass, known as blue carbon, which mitigates climate change as a potential carbon reservoir. This study examined the variation of mean grain size and organic carbon content of the surface sediments for 6 years and analyzed their relationship in the western and southern estuarine areas (Han River Estuary, Geum River Estuary, Yeongsan River Estuary, Seomjin River Estuary, and Nakdong River Estuary) and the East Sea upwelling area. During the sampling period (2015 to 2020), seasonal variation of both properties was not observed, because their variations might be controlled by diverse oceanographic environments and hydrographic conditions within each survey area. However, despite the synoptic problem of all samples, the positive relationship was obtained between the averages of mean grain size and organic carbon content, which clearly distinguishes each survey area. The unique positive relationship in all estuarine areas implies that the same process by sediment clay particles is important in the organic carbon accumulation. However, additional important factor may be expected in the organic carbon accumulation in the East Sea upwelling area. Further necessary data (sedimentation rate, dry bulk density etc) should be required for the estimation of carbon stock to evaluate the major estuaries in Korea as potential carbon reservoirs in the coastal environment.

Depositional Environment and Formation Ages of Eurimji Lake Sediments in Jaechon City, Korea (제천 의림지 호저퇴적물 퇴적환경과 형성시기 고찰)

  • 김주용;양동윤;이진영;김정호;이상헌
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.7-31
    • /
    • 2000
  • Quaternary Geological and geophysical investigation was performed at the Eurimji reservoir of Jaechon City in order to interprete depositional environment and genesis of lake sediments. For this purpose, echo sounding, bottom sampling and columnar sampling by drilling on board and GPR survey were employed for a proper field investigation. Laboratory tests cover grain size population analysis, pollen analysis and $^{14}C$ datings for the lake sediments. The some parts of lake bottom sediments anthropogenically tubated and filled several times to date, indicating several mounds on the bottom surface which is difficult to explain by bottom current. Majority of natural sediments were accumulated both as rolling and suspended loads during seasonal flooding regime, when flash flow and current flow are relatively strong not only at bridge area of the western part of Eurimji, connected to stream valley, but at the several conduit or sewage system surrounding the lake. Most of uniform suspend sediments are accumulated at the lake center and lower bank area. Some parts of bottom sediments indicate the existence of turbid flow and mudflow probably due to piezometric overflowing from the lake bottom, the existence of which are proved by CM patterns of the lake bottom sediments. The columnar samples of the lake sediments in ER-1 and ER-3-1 boreholes indicate good condition without any human tubation. The grain size character of borehole samples shows poorly sorted population, predominantly composed of fine sand and muds, varying skewness and kurtosis, which indicate multi-processed lake deposits, very similar to lake bottom sediments. Borehole columnar section, echo sounding and GPR survey profilings, as well as processed data, indicate that organic mud layers of Eurimji lake deposits are deeper and thicker towards lower bank area, especially west of profile line-9. In addition the columnar sediments indicate plant coverage of the Eurimji area were divided into two pollen zones. Arboreal pollen ( AP) is predominant in the lower pollen zone, whreas non-aboreal pollen(NAP) is rich in the upper pollen zone. Both of the pollen zones are related to the vegetation coverage frequently found in coniferous and deciduous broad-leaved trees(mixed forest) surrounded by mountains and hilly areas and prevailing by aquatic or aquatic margin under the wet temperate climate. The $^{14}C$ age of the dark gray organic muds, ER1-12 sample, is 950$\pm$40 years B.P. As the sediments are anthropogenetically undisturbed, it is assumed that the reliability of age is high. Three $^{14}C$ ages of the dark gray organic muds, including ER3-1-8, ER3-1-10, ER3-1-11 samples, are 600$\pm$30 years B.P., 650$\pm$30 years B.P., 800$\pm$40 years B.P. in the descending order of stratigraphic columnar section. Based on the interpretation of depositional environments and formation ages, it is proved that Eurimji reservoir were constructed at least 950$\pm$40 years B.P., the calibrated ages of which ranges from 827 years, B.P. to 866 years B.P. Ancient people utilize the natural environment of the stream valley to meet the need of water irrigation for agriculture in the local valley center and old alluvium fan area.

  • PDF

Removal and Release Velocities of Nutrients by Submerged Plants in Flood Control Reservoirs around Juam Lake (주암호 홍수조절용지내 침수 식물체의 영양염류 제거속도 및 용출속도)

  • Han, Jong-Hak;Seo, Dong-Cheol;Kim, Sang-Don;Kang, Se-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Kim, Hyun-Ook;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.144-152
    • /
    • 2011
  • BACKGROUND: Eutrophication occurs occasionally in flood control reservoirs around Juam lake in summer and early autumn. Lakeside macrophyte which is one of internal pollutants effects on water quality when it is submerged during water surface is rising after rainy season. METHODS AND RESULTS: To improve water the quality of water from water supply source and to establish the management plan of submerged plants in flood control reservoirs around Juam Lake, the removal and release velocities of nutrients by submerged plants in site 1 and 2 were investigated. Removal or release velocity constant (K) of COD by Carex dimorpholepis Steud in column was 0.07~0.18 $day^{-1}$ at 0~4 days after flooding, -0.23~-0.17 $day^{-1}$ at 5~19 days after flooding and -0.28~0.03 $day^{-1}$ at 20~33 days after flooding. Removal or release velocity constant (K) of T-N by Carex dimorpholepis Steud was 0.02 $day^{-1}$ at 0~4(8) days after flooding, -0.13~-0.10 $day^{-1}$ at 5(9)~33 days after flooding in column. Removal or release velocity constant (K) of T-P by Carex dimorpholepis Steud was 0.05~0.06 $day^{-1}$ at 0~4 days after flooding, -0.14~-0.09 $day^{-1}$ at 5~33 days after flooding. Release velocity constant (K) of nutrients by Miscanthus sacchariflorus Benth was lower than that by Carex dimorpholepis Steud. In site 1, the amount of nutrients release by Carex dimorpholepis Steud was 6,719 kg/month/area for COD, 2,397 kg/month/area for T-N and 466 kg/month/area for T-P. The amounts of nutrients release by Carex dimorpholepis Steud were higher than those by Miscanthus sacchariflorus Benth in both sites. CONCLUSION(s): The results of this study suggest that COD, T-N and T-P in water quality of Juam lake were strongly influenced by submerged plants in flood control reservoirs.