• Title/Summary/Keyword: Reservoir Environment

Search Result 851, Processing Time 0.03 seconds

Vegetation Composition and Structure of Sogwang-ri Forest Genetic Resources Reserve in Uljin-gun, Korea (울진 소광리 산림유전자원보호구역 산림식생의 조성 및 구조)

  • Kim, Hak-Yun;Cho, Hyun-Je
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.2
    • /
    • pp.188-201
    • /
    • 2017
  • Based on a total of 272 vegetation data collected by the ZM school phytosociological study method, the composition and structural characteristics of the forest vegetation in the Sogwang-ri forest genetic resource reservoir located in Uljin-gun, Gyeongsangbuk-do were compared using the table comparison method and the TWINSPAN method, And their ecological characteristics were analyzed. The types of forest vegetation were classified into 7 types, and it was divided into two major groups, 'Slope and Ridge type', which characterized by Quercus mongolica, Pinus densiflora for. erecta, Lespedeza bicolor etc. and 'valley and concave slope', which characterized by Cornus controversa, Fraxinus mandshurica, Morus bombycis, Hydrangea serrata for. acuminata etc. The hierarchy of the vegetation unit was 2 community groups, 4 communities, and 6 subcommunities. The structural characteristics such as the total percent cover, species importance value, species diversity of the constituent species per unit area($/100m^2$) of each type of forest vegetation were also identified. In order to understand the spatial distribution of forest vegetation, 1/5,000 large-scale physiognomic vegetation map was created by the uppermost dominant species. The composition and structural characteristics of Geumgang pine(P. densiflora for. erecta) forest, which is a core community of protected area by natural and anthropogenic influences, appear as a subtype of Quercus mongolica forest, which is a potential natural vegetation, Appropriate maintenance measures seemed urgently needed.

A Study on the Optimal Operation and Policy of the Boryeong Dam Diverion Pipe Line Using the SWAT Model (SWAT 모형을 이용한 보령댐 도수로 운영 방안 및 정책 연구)

  • Park, Bumsoo;Yoon, Hyo Jik;Hong, Yong Seok;Kim, Sung Pyo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.546-558
    • /
    • 2020
  • While industrialization has provided in abundance, the pollution it creates has caused untold damage to the environment, increasing the frequency and severity of natural disasters through changes in global climate patterns. The World Risk Forum's (WEF) World Risk Report presented the results of a survey of experts from around the world detailing the most influential risk factors over the next decade. Notably, the failure to respond to climate change ranked first and the global water crisis third. The extreme drought in the western Chungnam province was unexpected in 2016. At the time, the water level of Boryeong Dam was drastically decreased due to receiving less than half the average recorded rainfall in the region that year. The Boryeong Dam diversion pipeline has the capacity to solve the water shortage problem between these two regions by providing water from Geumgang to the western part of Chungnam, including Boryeong City. Current weather trends suggest drought is likely to continue in western Chungnam, which uses the Boryeong Dam as an intake source. This makes it necessary to operate Boryeong Dam diversion pipeline in an efficient and effective manner. SWAT is a watershed scale model developed to predict the impact of land management practices on water. The SWAT model was used in this study to evaluate the adequacy of the Boryeong Dam diversion pipeline operational plan by comparing it to present Boryeong Dam diversion pipeline operation. By investigating the number of days required to reach each reservoir stage, we determined that the number of days required to reach the boundary stage was less than that of the current operation. This determination accounts for the caveats that the Boryeong Dam waterway was not operated and only one pump will be operated from October to May of next year. As our results suggest, the most stable operation scenario is to operate two pumps at all times. This can be accomplished by operating two pumps from the caution stage to increase the number of pumps whenever the stage is raised. In addition to the stable operation of the Boryeong Dam pipeline, policy considerations are required with regard to imposing a water use charge on users of the Boryeong Dam region.

Water Quality Assessment and Turbidity Prediction Using Multivariate Statistical Techniques: A Case Study of the Cheurfa Dam in Northwestern Algeria

  • ADDOUCHE, Amina;RIGHI, Ali;HAMRI, Mehdi Mohamed;BENGHAREZ, Zohra;ZIZI, Zahia
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.563-573
    • /
    • 2022
  • This work aimed to develop a new equation for turbidity (Turb) simulation and prediction using statistical methods based on principal component analysis (PCA) and multiple linear regression (MLR). For this purpose, water samples were collected monthly over a five year period from Cheurfa dam, an important reservoir in Northwestern Algeria, and analyzed for 12 parameters, including temperature (T°), pH, electrical conductivity (EC), turbidity (Turb), dissolved oxygen (DO), ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), phosphate (PO43-), total suspended solids (TSS), biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results revealed a strong mineralization of the water and low dissolved oxygen (DO) content during the summer period. High levels of TSS and Turb were recorded during rainy periods. In addition, water was charged with phosphate (PO43-) in the whole period of study. The PCA results revealed ten factors, three of which were significant (eigenvalues >1) and explained 75.5% of the total variance. The F1 and F2 factors explained 36.5% and 26.7% of the total variance, respectively and indicated anthropogenic pollution of domestic agricultural and industrial origin. The MLR turbidity simulation model exhibited a high coefficient of determination (R2 = 92.20%), indicating that 92.20% of the data variability can be explained by the model. TSS, DO, EC, NO3-, NO2-, and COD were the most significant contributing parameters (p values << 0.05) in turbidity prediction. The present study can help with decision-making on the management and monitoring of the water quality of the dam, which is the primary source of drinking water in this region.

Pattern of Nutrient Fluxes in Deciduous Forest Ecosystem Imparted by Acidic Deposition (산성강하물 조건하에서 활엽수림 생태계의 양료순환 양상)

  • Chang, Kwan-Soon
    • Korean Journal of Environment and Ecology
    • /
    • v.15 no.3
    • /
    • pp.230-236
    • /
    • 2001
  • The fluxes of wet deposition(WD), throughfall(TF), stemflow(SF) and soil leachates were measured to understand base cation budgets on deciduous ecosystem impacted by acidic deposition in the north-western part of Tomakomai in Hokkaido, Japan. The flux of $H^{+}$ for wet deposition was $0.34kmo1_{c}$ $ha^{2+}$ and the flux of base cation, $K^{+}$ /, Na$^{ + }$, $Ca^{2+}$ and $Mg^{2+}$ far throughfall plus stemflow wart 1.6 kmolc $ha^{-1}$ , 3 times higher level than that for wet deposition. The flux of base cation for canopy leaching(LI) was 0.95 kmolc ha$^{-1}$ , 2.8 times higher level than $H^{+}$ sources in wet deposition. The major mechanism of $^{+}$ consumption closely related to acidic neutralizing capacity of canopy. The ionic flux for soil leachates from Boil reservoir and proton consumption in soil was dependent on soil chemical states and exchangeable Ca in soil had a major factor of H$^{+ }$ consumption. The base cation budgets on deciduous ecosystem showed positive balance fur Na, Ca and Mg, while K was the negative value.

  • PDF

Temperature Effect on the Growth and Odorous Material (2-MIB) Production of Pseudanabaena redekei (온도가 남조류 Pseudanabaena redekei의 성장과 냄새물질(2-MIB) 생산에 미치는 영향)

  • Jaehyun Kim;Keonhee Kim;Chaehong Park;Hyunjin Kim;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.151-160
    • /
    • 2023
  • Cyanobacteria Pseudanabaena strains are known to produce 2-MIB(odorous material) in freshwater systems, thereby causing problems in water use. However, their physiological responses to environmental factors in relation with 2-MIB production is not well explored. This study was conducted to evaluate the effect of temperature on the growth and 2-MIB production of Pseudanabaena redekei. The experimental cyanobacteria strains were separated from the Uiam Reservoir (North Han River) and cultured in the BG-11 medium. Temperature was set to 10, 15, 20, 25, and 30℃ for the experiment, in the reflection of the seasonal water temperature variation in situ. For each temperature treatment, cyanobacterial biomass(Chl-a) and 2-MIB concentration (intra-cellular and extra-cellular fractions) were measured every 2 days for 18 days. Both maximal growth and total 2-MIB production of P. redekei appeared at 30℃. While intra-cellular 2-MIB contents were similar (26~29 ng L-1) regardless of treated temperatures, extra-cellular 2-MIB concentration was higher only in high temperature conditions (25~30℃), indicating that the extents of 2-MIB biosynthesis and release by P. redekei vary with temperature. The 2-MIB productivity of P. redekei was much higher in low-temperature conditions (10~15℃) than high temperature conditions (25~30℃). This study demonstrated that temperature was a critical factor contributing to 2-MIB biosynthesis and its release in cell growth (r=0.605, p<0.01). These results are important to understand the dynamics of 2-MIB in the field and thereby provide basic information for managing odorous material in drinking water resources.

Development of a simulation method for the subsea production system

  • Woo, Jong Hun;Nam, Jong Ho;Ko, Kwang Hee
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.173-186
    • /
    • 2014
  • The failure of a subsea production plant could induce fatal hazards and enormous loss to human lives, environments, and properties. Thus, for securing integrated design safety, core source technologies include subsea system integration that has high safety and reliability and a technique for the subsea flow assurance of subsea production plant and subsea pipeline network fluids. The evaluation of subsea flow assurance needs to be performed considering the performance of a subsea production plant, reservoir production characteristics, and the flow characteristics of multiphase fluids. A subsea production plant is installed in the deep sea, and thus is exposed to a high-pressure/ low-temperature environment. Accordingly, hydrates could be formed inside a subsea production plant or within a subsea pipeline network. These hydrates could induce serious damages by blocking the flow of subsea fluids. In this study, a simulation technology, which can visualize the system configuration of subsea production processes and can simulate stable flow of fluids, was introduced. Most existing subsea simulations have performed the analysis of dynamic behaviors for the installation of subsea facilities or the flow analysis of multiphase flow within pipes. The above studies occupy extensive research areas of the subsea field. In this study, with the goal of simulating the configuration of an entire deep sea production system compared to existing studies, a DES-based simulation technology, which can logically simulate oil production processes in the deep sea, was analyzed, and an implementation example of a simplified case was introduced.

Environmental Friendly Space Planning for Reservoirs in Siheung City (시흥시 주요 저수지의 환경친화적 공간 계획)

  • Kim, Hyun;Kim, Nam Choon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.4
    • /
    • pp.8-20
    • /
    • 2007
  • This report designs a landscape plan of six reservoirs in Sihung city which has possibilities both in development and in destruction. The report suggests how to create a leisure space in harmony with the surroundings in Sihung city. Building a leisure town will create the local residents' demand in recreational activities and improve the amenities. Therefore this study analyzes eco-friendliness of the land, conditions of fauna and flora, the quality of water and the usage figures of the six reservoirs so as to develop those six reservoirs more eco-friendly. Based on environmentalism, the leisure spot development plan attribute the ultimate importance to local residents' pleasant leisure time and recreations. With this master plan, the report suggests expanding the city's green space, since the city has under 50% out of the optimal percentage of green space per person. In addition, the report intends to plan each six reservoirs developed separately but organically connected at the same time that those six can put together and become a Sihung Green Way which makes the city's leisure space a belt. Apportioning the six reservoirs development levels in order to balance the development, accumulating and arranging buildings and facilities in available spaces according to the governing law, and creating resting area, promenade and parking lot to make an eco-city. Also the report suggests conserving environment and regulating contamination such as ban on fishing to move forward sustainable development. Since the adventives predominate the site, introducing indigenous plants should be necessary soon.

Differences in microbiome and virome between cattle and horses in the same farm

  • Park, Jongbin;Kim, Eun Bae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1042-1055
    • /
    • 2020
  • Objective: The ecosystem of an animal farm is composed of various elements, such as animals, farmers, plants, feed, soil, and microorganisms. A domesticated animal's health is largely connected with the reservoir of bacteria and viruses in animal farms. Although a few studies have focused on exploring the gut microbiome of animals, communities of microbiota and viruses in feedlots have not been thoroughly investigated. Methods: Here, we collected feces and dust samples (4 groups: cattle feces, C_F; horse feces, H_F; cattle dust, C_D; and horse dust, H_D) from cattle and horse farms sharing the same housing and investigated their microbiome/virome communities by Illumina sequencing. Results: Dust groups (C_D and H_D) showed higher microbial diversity than feces groups (C_F and H_F) regardless of animal species. From the microbial community analysis, all the samples from the four groups have major phyla such as Proteobacteria (min 37.1% to max 42.8%), Firmicutes (19.1% to 24.9%), Bacteroidetes (10.6% to 22.1%), and Actinobacteria (6.1% to 20.5%). The abundance of Streptococcus, which commonly recognized as equine pathogens, was significantly higher in the horse group (H_D and H_F). Over 99% among the classified virome reads were classified as Caudovirales, a group of tailed bacteriophages, in all four groups. Foot-and-mouth disease virus and equine adenovirus, which cause deadly diseases in cattle and horse, respectively, were not detected. Conclusion: Our results will provide baseline information to understand different gut and environmental microbial ecology between two livestock species.

Water Demand and Supply Stability Analysis Using Shared Vision Model (Shared Vision 모형을 이용한 용수수급의 안정성 분석)

  • Jeong, Sang-Man;Lee, Joo-Heon;Ahn, Joong-Kun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.569-579
    • /
    • 2004
  • Recently, the extreme drought is often occurred due to the global warming and the serious weather changes. Also, the problems of the water pollution In the developed areas, the oppositions from people in the upper stream area and water concession from the local governments affect the national request to get more clean water resources in upper stream of the undeveloped areas. It also brings on the necessity of recognition for water supply managements. Therefore, as the water demand is rapidly changes in the metropolitan areas, the capability of water supply from the north Han river basin dams should be appropriately investigated. In this study, we developed a simulation system using STELLA (equation omitted) software environment, a shared vision model, to analyze the possibility of the stable water supply from north Han river basin dams. Also, three different rules are applied on this model by dividing the water level to minimum(Rule 1), medium(Rule 2) and maximum(Rule 3). Using the rules, the safety yield changes are analyzed for dam rule curve of the reservoir and hydropower release.

Exploring the Dynamics of Dissolved Oxygen and Vertical Density Structure of Water Column in the Youngsan Lake (인공호소인 영산호의 용존산소 분포와 수층 성층구조의 연관성 분석)

  • Song, Eun-Sook;Cho, Ki-An;Shin, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.163-174
    • /
    • 2015
  • The Youngsan Lake was constructed to supply agricultural water to the extensive rice fields in the basin of the lake in 1981. Hypoxia has often developed in the bottom water of the lake during the warm season although the water depth is relatively shallow (< 16 m). We investigated the spatial and temporal variations of dissolved oxygen (DO) and physical properties such as water temperature, salinity and turbidity to elucidate the effects of change in physical properties on DO dynamics in the lake. Vertical profiles of DO, temperature, salinity, and water density were also explored to verify the development of stratification in relation to DO variation in the water column. Hypoxia (DO < $2mg\;L^{-1}$) was not observed in the upper regions whereas hypoxia was detected in the lower regions during the warm season. Thermocline generally developed in the lower regions during the warm season unlike the previous studies in which no thermocline was observed. However, water column was well mixed when freshwater water was discharged from the reservoir through the sluice gate of the dike. DO concentrations also decreased when halocline or pycnocline developed during the dry season suggesting that the vertical stratification of water column affects DO dynamics although the water depth is shallow in the Youngsan lake.