• Title/Summary/Keyword: Research-based

Search Result 86,771, Processing Time 0.096 seconds

BaSDAS: a web-based pooled CRISPR-Cas9 knockout screening data analysis system

  • Park, Young-Kyu;Yoon, Byoung-Ha;Park, Seung-Jin;Kim, Byung Kwon;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.46.1-46.4
    • /
    • 2020
  • We developed the BaSDAS (Barcode-Seq Data Analysis System), a GUI-based pooled knockout screening data analysis system, to facilitate the analysis of pooled knockout screen data easily and effectively by researchers with limited bioinformatics skills. The BaSDAS supports the analysis of various pooled screening libraries, including yeast, human, and mouse libraries, and provides many useful statistical and visualization functions with a user-friendly web interface for convenience. We expect that BaSDAS will be a useful tool for the analysis of genome-wide screening data and will support the development of novel drugs based on functional genomics information.

Comparison Analysis of Co-authorship Network and Citation Based Network for Author Research Similarity Exploration

  • Jeeyoung, Yoon;Min, Song
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.56 no.4
    • /
    • pp.269-284
    • /
    • 2022
  • Exploring research similarity of researchers offers insight on research communities and potential interactions among scholars. While co-authorship is a popular measure for studying research similarity of researchers, it cannot provide insight on authors who have not collaborated yet. In this work, we present novel approach to capture research similarity of authors using citation information. Extensive study is conducted on DATA & KNOWLEDGE ENGINEERING (DKE) publications to demonstrate and compare suggested approach with co-authorship based approach. Analysis result shows that proposed approach distinguishes author relationships that is not shown in co-authorship network.

Research Trend on Machine Learning Healthcare Based on Keyword Frequency and Centrality Analysis : Focusing on the United States, the United Kingdom, Korea (키워드 빈도 및 중심성 분석 기반의 머신러닝 헬스케어 연구 동향 : 미국·영국·한국을 중심으로)

  • Lee Taekkyeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.149-163
    • /
    • 2023
  • In this study we analyze research trends on machine learning healthcare based on papers from the United States, the United Kingdom, and Korea. In Elsevier's Scopus, we collected 3425 papers related to machine learning healthcare published from 2018 to 2022. Keyword frequency and centrality analysis were conducted using the abstracts of the collected papers. We identified keywords with high frequency of appearance by calculating keyword frequency and found central research keywords through the centrality analysis by country. Through the analysis results, research related to machine learning, deep learning, healthcare, and the covid virus was conducted as the most central and highly mediating research in each country. As the implication, studies related to electronic health information-based treatment, natural language processing, and privacy in Korea have lower degree centrality and betweenness centrality than those of the United States and the United Kingdom. Thus, various convergence research applied with machine learning is needed for these fields.

Bayesian-based seismic margin assessment approach: Application to research reactor

  • Kwag, Shinyoung;Oh, Jinho;Lee, Jong-Min;Ryu, Jeong-Soo
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.653-663
    • /
    • 2017
  • A seismic margin assessment evaluates how much margin exists for the system under beyond design basis earthquake events. Specifically, the seismic margin for the entire system is evaluated by utilizing a systems analysis based on the sub-system and component seismic fragility data. Each seismic fragility curve is obtained by using empirical, experimental, and/or numerical simulation data. The systems analysis is generally performed by employing a fault tree analysis. However, the current practice has clear limitations in that it cannot deal with the uncertainties of basic components and accommodate the newly observed data. Therefore, in this paper, we present a Bayesian-based seismic margin assessment that is conducted using seismic fragility data and fault tree analysis including Bayesian inference. This proposed approach is first applied to the pooltype nuclear research reactor system for the quantitative evaluation of the seismic margin. The results show that the applied approach can allow updating by considering the newly available data/information at any level of the fault tree, and can identify critical scenarios modified due to new information. Also, given the seismic hazard information, this approach is further extended to the real-time risk evaluation. Thus, the proposed approach can finally be expected to solve the fundamental restrictions of the current method.

A multilayered Pauli tracking architecture for lattice surgery-based logical qubits

  • Jin-Ho, On;Chei-Yol Kim;Soo-Cheol Oh;Sang-Min Lee;Gyu-Il Cha
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.462-478
    • /
    • 2023
  • In quantum computing, the use of Pauli frames through software traces of classical computers improves computation efficiency. In previous studies, error correction and Pauli operation tracking have been performed simultaneously using integrated Pauli frames in the physical layer. In such a complex processing structure, the number of simultaneous operations processed in the physical layer exponentially increases as the distance of the surface code encoding logical qubit increases. This study proposes a Pauli frame management architecture partitioned into two layers for a lattice surgery-based surface code and describes its structure and operation rules. To evaluate the effectiveness of our method, we generated a random circuit according to the gate ratios constituting the commonly known quantum circuits and compared the generated circuit with the existing Pauli frame and our method. Simulations show a decrease of about 5% over traditional methods. In the case of experiments that only increase the code distance of the logical qubit, it can be seen that the effect of reducing the physical operation through the logical Pauli frame becomes more important.

View synthesis with sparse light field for 6DoF immersive video

  • Kwak, Sangwoon;Yun, Joungil;Jeong, Jun-Young;Kim, Youngwook;Ihm, Insung;Cheong, Won-Sik;Seo, Jeongil
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.24-37
    • /
    • 2022
  • Virtual view synthesis, which generates novel views similar to the characteristics of actually acquired images, is an essential technical component for delivering an immersive video with realistic binocular disparity and smooth motion parallax. This is typically achieved in sequence by warping the given images to the designated viewing position, blending warped images, and filling the remaining holes. When considering 6DoF use cases with huge motion, the warping method in patch unit is more preferable than other conventional methods running in pixel unit. Regarding the prior case, the quality of synthesized image is highly relevant to the means of blending. Based on such aspect, we proposed a novel blending architecture that exploits the similarity of the directions of rays and the distribution of depth values. By further employing the proposed method, results showed that more enhanced view was synthesized compared with the well-designed synthesizers used within moving picture expert group (MPEG-I). Moreover, we explained the GPU-based implementation synthesizing and rendering views in the level of real time by considering the applicability for immersive video service.

Factors affecting real-time evaluation of muscle function in smart rehab systems

  • Hyunwoo Joe;Hyunsuk Kim;Seung-Jun Lee;Tae Sung Park;Myung-Jun Shin;Lee Hooman;Daesub Yoon;Woojin Kim
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.603-614
    • /
    • 2023
  • Advancements in remote medical technologies and smart devices have led to expectations of contactless rehabilitation. Conventionally, rehabilitation requires clinicians to perform routine muscle function assessments with patients. However, assessment results are difficult to cross-reference owing to the lack of a gold standard. Thus, the application of remote smart rehabilitation systems is significantly hindered. This study analyzes the factors affecting the real-time evaluation of muscle function based on biometric sensor data so that we can provide a basis for a remote system. We acquired real clinical stroke patient data to identify the meaningful features associated with normal and abnormal musculature. We provide a system based on these emerging features that assesses muscle functionality in real time via streamed biometric signal data. A system view based on the amount of data, data processing speed, and feature proportions is provided to support the production of a rudimentary remote smart rehabilitation system.

3D Printing of Materials and Printing Parameters with Animal Resources: A Review

  • Eun Young Jeon;Yuri Kim;Hyun-Jung Yun;Bum-Keun Kim;Yun-Sang Choi
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.225-238
    • /
    • 2024
  • 3D printing technology enables the production of creative and personalized food products that meet consumer needs, such as an attractive visual appearance, fortification of specific nutrients, and modified textures. To popularize and diversify 3D-printed foods, an evaluation of the printing feasibility of various food pastes, including materials that cannot be printed natively, is necessary. Most animal resources, such as meat, milk, and eggs, are not inherently printable; therefore, the rheological properties governing printability should be improved through pre-/post-processing or adding appropriate additives. This review provides the latest progress in extrusion-based 3D printing of animal resource-based inks. In addition, this review discusses the effects of ink composition, printing conditions, and post-processing on the printing performance and characteristics of printed constructs. Further research is required to enhance the sensory quality and nutritional and textural properties of animal resource-based printed foods.

A Novel Method of All-Optical Switching: Quantum Router

  • Ham, Byoung-Seung
    • ETRI Journal
    • /
    • v.23 no.3
    • /
    • pp.106-110
    • /
    • 2001
  • Subpicosecond all-optical switching method based on the simultaneous two-photon coherence exchange is proposed and numerically demonstrated. The optical switching mechanism is based on the optical field induced dark resonance swapping via nondegenerate four-wave mixing processes. For potential applications of ultrafast all-optical switching in fiber-optic communications, 10-THz channel number independent quantum router is discussed.

  • PDF

A Study on the Product Information Interoperability between Heterogeneous Systems using Rule-based Reasoning (규칙 기반 추론을 이용한 이기종 시스템간의 제품 정보 상호운용에 관한 연구)

  • Lee, Sang-Seok;Yang, Tae-Ho;Lee, Duk-Hee;Oh, Seog-Chan;Noh, Sang-Do
    • IE interfaces
    • /
    • v.24 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • The amount of Meta-data to be managed increases with development of information technology. However, when trying to integrate and share product information of heterogeneous systems within or between companies, sharing of information is impossible if product information classification systems are different. Due to the situation mentioned above, engineers judge the product information classification system and maps corresponding Meta-data for document-based sharing. Judging exponentially increasing amount of data by engineers and sharing product information using documents create great amount of time delay and errors in data handling. Therefore, construction of a system for integrated management and interoperability between product information based on semantic information similar to engineer's judgment is required. This paper proposes a methodology and necessity of a system for interoperability of product information based on semantic web, and also designs a system to integrate heterogeneous systems with different product information using rule based reasoning. This paper also suggests a system base for interoperability and integration of product information between heterogeneous systems by integrating the product information classification system semantically.