• Title/Summary/Keyword: Research vessel NARA

Search Result 10, Processing Time 0.026 seconds

Study on Stopping Ability of a Ship Equipped with Azimuth Propeller

  • Park, Jong-Yong;Oh, Pilgun;Kim, Taejin;Lee, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • An azimuth propeller can generate thrust in all directions by rotating its housing with an electric motor. An azimuth propeller can be operated using several methods to stop a ship. This study aims to derive an efficient method to stop a ship safely using an azimuth propeller through full-scale maneuvering trials with the research vessel "NARA" of Pukyong National University in 4.63 m/s (9 kts). Five methods with different azimuth propeller operations were tested to stop the ship. The test results confirmed that the simultaneous use of the thrust and the hydrodynamic force acting on the strut is the most effective method to stop the ship.

A Study on Full-scale Maneuvering Trials using Bow Thruster (선수 스러스터를 이용한 실선스케일 조종시험에 관한 연구)

  • Park, Jong-Yong;Lee, Jun-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.52-59
    • /
    • 2020
  • This study aims to investigate the bow thruster performance of the research vessel "NARA" by full-scale maneuvering trials. The thruster test method refers to ITTC's recommended procedures and guidelines. Turning tests with the bow thruster are performed at speed conditions of 0, 2, and 4 knots. The test results indicate that the Rate of Turn (ROT) increased when the ship is in a higher speed condition. Due to the position of the propeller and the housing of the bow thruster, there is difference in the efficiency of the bow thruster according to the turning direction. Zigzag tests with the bow thruster were conducted at speed conditions of 2 and 4 knots. At speeds above 4 knots, it seems difficult to change the course only with the bow thruster.

A Study on Full-Scale Crabbing Test Using Dynamic Positioning System (동적위치제어시스템을 이용한 선박의 실선스케일 횡이동시험에 관한 연구)

  • Park, Jong-Yong;Lee, Jun-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.345-352
    • /
    • 2020
  • This study aims to investigate the crabbing motion of the research vessel "NARA" by full-scale maneuvering trials. The crabbing test method refers to ITTC recommended procedures and guidelines. In order to minimize the fluctuation of the heading angle due to the external force acting on the hull during the pure lateral motion, the tests are conducted using the dynamic positioning system applied to the ship. The test results are analyzed by applying a low-pass filter to remove the noise included in the measurement data. Three conditions are set to define the steady state of crabbing motion. The index to be derived from the crabbing test is quantitatively presented. The ship is confirmed to be capable of the lateral motion of up to 0.844m/s in Beaufort 3.

A Study on Development of Sway Velocity Reference Model During Auto-berthing/Unberthing Through Analysis of Ship's Berthing/Unberthing Data (선박의 이/접안 데이터 분석을 통한 자동 이/접안 시 횡방향속도 참조모형 개발에 관한 연구)

  • Kim, Jung-Hyeon;Jo, Hyun-Jae;Kim, Su-Rim;Lee, Jun-Ho;Park, Jong-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.358-365
    • /
    • 2021
  • Crabbing motion is a pure sway motion with only sway velocity. The ship's crabbing motion is essential for an ideal berthing/unberthing process. The unberthing situation proceeds in sequential order such as crabbing motion section, pivoting section, and outer port section. For the berthing situation, the sequence has a reverse order: the inner port section, pivoting section, and crabbing motion section. In this paper, the berthing/unberthing data of the reference ship, Pukyong National University research ship "NARA", was analyzed to develop a sway velocity reference model. Several constraints were defined to derive the crabbing motion section during berthing/unberthing. The sway velocity reference model for the auto-berthing/unberthing was developed using the estimated sway velocity. A reproduction simulation of the ship was performed to compare the designed reference model and the reference ship data.

The maneuvering characteristics of the research vessel NARA equipped with the azimuth thruster system (Azimuth thruster 시스템을 장착한 나라호의 조종성)

  • KIM, Jung-Chang;KANG, Il-Kwon;LEE, Jun-Ho;HAM, Sang-Jun;PARK, Chi-Wan;KIM, Su-Hyeng
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.276-285
    • /
    • 2017
  • The research vessel NARA equipped with an azimuth thruster system was built in 2015. There are few vessels with this propulsion system in Korea. This vessel has two modes such as the normal for maneuvering and the power for investigation, and the other two modes as one axis and two axes on the operating. This type of vessels does not seem to have a clear grasp of the maneuvering character in comparison with the vessel with a conventional propulsion system. So the authors carried out the sea test for the turning, the zigzag and the inclination, and the results are as follows. In turning test, the case of using the two axes mode is much better than the case of using the one axis mode for the elements of turning, such as advance, transfer, tactical diameter and final diameter, but turning hard over the rudder in full speed is very vulnerable to capsize in both modes. In zigzag test, the yaw quicking responsibility index, T is very large excessively, which means a bad counter maneuvering ability, so an operator has to keep in mind that in turning operation. If necessary to avoid collision at head on situation, it may be a more effective method to use the crash astern stop than the turning according to the conditions and circumstances for the shortest stopping distance is very short.

Impact Analysis of Deep Learning Super-resolution Technology for Improving the Accuracy of Ship Detection Based on Optical Satellite Imagery (광학 위성 영상 기반 선박탐지의 정확도 개선을 위한 딥러닝 초해상화 기술의 영향 분석)

  • Park, Seongwook;Kim, Yeongho;Kim, Minsik
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.559-570
    • /
    • 2022
  • When a satellite image has low spatial resolution, it is difficult to detect small objects. In this research, we aim to check the effect of super resolution on object detection. Super resolution is a software method that increases the resolution of an image. Unpaired super resolution network is used to improve Sentinel-2's spatial resolution from 10 m to 3.2 m. Faster-RCNN, RetinaNet, FCOS, and S2ANet were used to detect vessels in the Sentinel-2 images. We experimented the change in vessel detection performance when super resolution is applied. As a result, the Average Precision (AP) improved by at least 12.3% and up to 33.3% in the ship detection models trained with the super-resolution image. False positive and false negative cases also decreased. This implies that super resolution can be an important pre-processing step in object detection, and it is expected to greatly contribute to improving the accuracy of other image-based deep learning technologies along with object detection.

Observing System Experiment Based on the Korean Integrated Model for Upper Air Sounding Data in the Seoul Capital Area during 2020 Intensive Observation Period (2020년 수도권 라디오존데 집중관측 자료의 한국형모델 기반 관측 영향 평가)

  • Hwang, Yoonjeong;Ha, Ji-Hyun;Kim, Changhwan;Choi, Dayoung;Lee, Yong Hee
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.311-326
    • /
    • 2021
  • To improve the predictability of high-impact weather phenomena around Seoul, where a larger number of people are densely populated, KMA conducted the intensive observation from 22 June to 20 September in 2020 over the Seoul area. During the intensive observation period (IOP), the dropsonde from NIMS Atmospheric Research Aircraft (NARA) and the radiosonde from KMA research vessel Gisang1 were observed in the Yellow Sea, while, in the land, the radiosonde observation data were collected from Icheon and Incheon. Therefore, in this study, the effects of radiosonde and dropsonde data during the IOP were investigated by Observing System Experiment (OSE) based on Korean Integrated Model (KIM). We conducted two experiments: CTL assimilated the operational fifteen kinds of observations, and EXP assimilated not only operational observation data but also intensive observation data. Verifications over the Korean Peninsula area of two experiments were performed against analysis and observation data. The results showed that the predictability of short-range forecast (1~2 day) was improved for geopotential height at middle level and temperature at lower level. In three precipitation cases, EXP improved the distribution of precipitation against CTL. In typhoon cases, the predictability of EXP for typhoon track was better than CTL, although both experiments simulated weaker intensity as compared with the observed data.

A Study on the Improvement of Steering Command System through Accident Analysis of Azimuth thruster using STAMP Method

  • HyunDong Kim;SangHoon Lee;JeongMin Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.149-158
    • /
    • 2023
  • With the global paradigm shift towards climate change, the shipbuilding industry is also considering propulsion systems that utilize eco-friendly fuels various propulsion systems are gaining attention as a result. In conventional propulsion systems, typically consisting of propellers and rudders, have evolved into a diverse range of systems due to the development of a special propulsion system known as the azimuth thruster. While azimuth thrusters were previously commonly installed on tugboats, they are now extensively used on offshore plant operation ships equipped with dynamic positioning systems. However, these azimuth thrusters require different steering methods compared to conventional propulsion systems, leading to a significant learning curve for the crew members boarding such vessels. Furthermore the availability of education related to these special propulsion systems is limited. This study aims to analyze accidents caused by inadequate control of vessels equipped with azimuth thrusters using the STAMP technique. And it proposes the necessity of standard steering commands for the safe operation of vessels equipped with special propellers.

Comparative Analysis of Marine Accidents in Fishing Activity Protection Zones and Port and Navigation Zones to Improve Fishing Vessel Security (어선 통항 안전 확보를 위한 어업활동보호구역과 항만·항행구역의 해양사고 비교분석)

  • Hyundong Kim;Sangwon Park;Young-soo Park;Dae-won Kim;Gokhan Camliyurt
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.118-126
    • /
    • 2023
  • In accordance with the increased demand for ocean use, the Marine Spatial Planning system was introduced to rationally allocate ocean space, under which fishing activity protection zones have been designated to protect fishery activities and promote fishery resource protection. However, fishing vessels that mainly sail in fishing activity protection zones are exposed to risk, such that they account for about 70% of marine accidents that occur in Korea, Proper risk management is thus required. This study aims to analyze marine accidents in fishing activities protection zones and port and navigation zones to secure the safety of fishing vessels passing within fishing activity protection zones. To this end, the traffic volume in marine use zones was investigated, and marine accidents were investigated by ship type, accident type, tonnage, accident cause, and loss of life. Analysis determined that most of the marine accidents per unit area of each type occurred in port and navigation zones, but overall most marine accidents occurred in fishing activity protection zones. In particular, it was found that traffic safety management was necessary because many human accidents occurred.

Analysis of the Minimum Distance of Small and Medium-Sized Fishing Vessels near Busan Port (어선 점용면적 기초 연구를 위한 부산항 중·소형 어선의 통항 이격거리 조사 및 분석)

  • Park, Hyungoo;Kim, Hyundong;Park, Young-soo;Kim, Dae-won;Park, Sangwon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.798-807
    • /
    • 2021
  • In the era of the fourth industrial revolution, Maritime Autonomous Surface Ship(MASS) are expected to emerge in the shipping industry. There has been much active research on collision avoidance systems regarding MASSs, but most of it has focused on merchant ships. A study of collision avoidance systems in fishing vessels is also essential, because Maritime Autonomous Surface Ships will encounter all type of vessels. In this study, the minimum passage distance between small-medium-sized fishing vessels and other vessels was investigated for the Ship's domain analysis. Based on the AIS data of Busan port and the adjacent area, the separation distances of fishing vessels were analyzed. The results indicated that as the speed of fishing vessels increased, the distance increased from 4L to 8L, and as length of the fishing vessels increased, the distance decreased from 10L to 6L. It is believed that the results of this study can be applied in the future to collision avoidance models for MASSs that reflect the domain of fishing vessels.