• Title/Summary/Keyword: ResNet18

Search Result 42, Processing Time 0.021 seconds

Axial strength of Zircaloy-4 samples with reduced thickness after a simulated loss of coolant accident

  • Desquines, Jean;Taurines, Tatiana
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2295-2303
    • /
    • 2021
  • To investigate wall-thinning impact on axial load resistance of Zircaloy-4 cladding rods after a LOCA transient, axial tensile samples have been machined on as-received tubes with reduced thicknesses between 370 and 580 ㎛. After high temperature oxidation under steam at 1200 ℃ with measured ECR ranging from 10 to 18% and water quenching, machined samples were axially loaded until fracture. These tests were modeled using a fracture mechanics approach developed in a previous study. Fracture stresses are rather well predicted. However, the slightly lower fracture stress observed for wall-thinned samples is not anticipated by this modeling approach. The results from this study confirm that characterizing the axial load resistance using semi-integral tests including the creep and burst phases was the best option to obtain accurate axial strengths describing accurately the influence of wall-thinning at burst region.

Transfer Learning for Caladium bicolor Classification: Proof of Concept to Application Development

  • Porawat Visutsak;Xiabi Liu;Keun Ho Ryu;Naphat Bussabong;Nicha Sirikong;Preeyaphorn Intamong;Warakorn Sonnui;Siriwan Boonkerd;Jirawat Thongpiem;Maythar Poonpanit;Akarasate Homwiseswongsa;Kittipot Hirunwannapong;Chaimongkol Suksomsong;Rittikait Budrit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.126-146
    • /
    • 2024
  • Caladium bicolor is one of the most popular plants in Thailand. The original species of Caladium bicolor was found a hundred years ago. Until now, there are more than 500 species through multiplication. The classification of Caladium bicolor can be done by using its color and shape. This study aims to develop a model to classify Caladium bicolor using a transfer learning technique. This work also presents a proof of concept, GUI design, and web application deployment using the user-design-center method. We also evaluated the performance of the following pre-trained models in this work, and the results are as follow: 87.29% for AlexNet, 90.68% for GoogleNet, 93.59% for XceptionNet, 93.22% for MobileNetV2, 89.83% for RestNet18, 88.98% for RestNet50, 97.46% for RestNet101, and 94.92% for InceptionResNetV2. This work was implemented using MATLAB R2023a.

Searching the Damaged Pine Trees from Wilt Disease Based on Deep Learning (딥러닝 기반 소나무 재선충 피해목 탐색)

  • ZHANGRUIRUI, ZHANGRUIRUI;YOUJIE, YOUJIE;Kim, Byoungjun;Sun, Joonam;Lee, Joonwhoan
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.46-51
    • /
    • 2020
  • Pine wilt disease is one of the reasons that results in huge damage on pine trees in east Asia including Korea, Japan, and China, and early finding and removing the diseased trees is an efficient way to prevent the forest from wide spreading. This paper proposes a searching method of the damaged pine trees from wilt disease in ortho-images corrected from RGB images, which are captured by unmanned aviation vehicles. The proposed method constructs patch-based classifier using ResNet18 backbone network, classifies the RGB ortho-image patches, and make the results as a heat map. The heat map can be used to find the distribution of diseased pine trees, to show the trend of spreading disease, and to extract the RGB distribution of the diseased areas in the image. The classifier in the work shows 94.7% of accuracy.

A Study on the Application of Deep Learning Model by Using ACR Phantom in CT Quality Control (CT 정도관리에서 ACR 팬텀을 이용한 딥러닝 모델 적용에 관한 연구)

  • Eun-Been Choi;Si-On Kim;Seung-Won Choi;Jae-Hee Kim;Young-Kyun Kim;Dong-Kyun Han
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.535-542
    • /
    • 2023
  • This study aimed to implement a deep learning model that can perform quantitative quality control through ACTS software used for quantitative evaluation of ACR phantom in CT quality control and evaluate its usefulness. By changing the scanning conditions, images of three modules of the ACR phantom's slice thickness (ST), low contrast resolution (LC), and high contrast resolution (HC) were obtained and classified as ACTS software. The deep learning model used ResNet18, implementing three models in which ST, HC, and LC were learned with epoch 50 and an integrated model in which three modules were learned with Epoch 10, 30, and 50 at once. The performance of each model was evaluated through Accuracy and Loss. When comparing and evaluating the accuracy and loss function values of the deep learning models by ST, LC, and HC modules, the Accuracy and Loss of the HC model were the best with 100% and 0.0081, and in the integrated model according to the Epoch value, Accuracy and Loss with epoch 50 were the best with 96.29% and 0.1856. This paper showed that quantitative quality control is possible through a deep learning model, and it can be used as a basis and evidence for applying deep learning to the CT quality control.

A Comparative Study of Alzheimer's Disease Classification using Multiple Transfer Learning Models

  • Prakash, Deekshitha;Madusanka, Nuwan;Bhattacharjee, Subrata;Park, Hyeon-Gyun;Kim, Cho-Hee;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.209-216
    • /
    • 2019
  • Over the past decade, researchers were able to solve complex medical problems as well as acquire deeper understanding of entire issue due to the availability of machine learning techniques, particularly predictive algorithms and automatic recognition of patterns in medical imaging. In this study, a technique called transfer learning has been utilized to classify Magnetic Resonance (MR) images by a pre-trained Convolutional Neural Network (CNN). Rather than training an entire model from scratch, transfer learning approach uses the CNN model by fine-tuning them, to classify MR images into Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal control (NC). The performance of this method has been evaluated over Alzheimer's Disease Neuroimaging (ADNI) dataset by changing the learning rate of the model. Moreover, in this study, in order to demonstrate the transfer learning approach we utilize different pre-trained deep learning models such as GoogLeNet, VGG-16, AlexNet and ResNet-18, and compare their efficiency to classify AD. The overall classification accuracy resulted by GoogLeNet for training and testing was 99.84% and 98.25% respectively, which was exceptionally more than other models training and testing accuracies.

Power-Efficient DCNN Accelerator Mapping Convolutional Operation with 1-D PE Array (1-D PE 어레이로 컨볼루션 연산을 수행하는 저전력 DCNN 가속기)

  • Lee, Jeonghyeok;Han, Sangwook;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.2
    • /
    • pp.17-26
    • /
    • 2022
  • In this paper, we propose a novel method of performing convolutional operations on a 2-D Processing Element(PE) array. The conventional method [1] of mapping the convolutional operation using the 2-D PE array lacks flexibility and provides low utilization of PEs. However, by mapping a convolutional operation from a 2-D PE array to a 1-D PE array, the proposed method can increase the number and utilization of active PEs. Consequently, the throughput of the proposed Deep Convolutional Neural Network(DCNN) accelerator can be increased significantly. Furthermore, the power consumption for the transmission of weights between PEs can be saved. Based on the simulation results, the performance of the proposed method provides approximately 4.55%, 13.7%, and 2.27% throughput gains for each of the convolutional layers of AlexNet, VGG16, and ResNet50 using the DCNN accelerator with a (weights size) x (output data size) 2-D PE array compared to the conventional method. Additionally the proposed method provides approximately 63.21%, 52.46%, and 39.23% power savings.

Smartphone-based Gait Analysis System for the Detection of Postural Imbalance in Patients with Cerebral Palsy (뇌성마비 환자의 자세 불균형 탐지를 위한 스마트폰 동영상 기반 보행 분석 시스템)

  • Yoonho Hwang;Sanghyeon Lee;Yu-Sun Min;Jong Taek Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.41-50
    • /
    • 2023
  • Gait analysis is an important tool in the clinical management of cerebral palsy, allowing for the assessment of condition severity, identification of potential gait abnormalities, planning and evaluation of interventions, and providing a baseline for future comparisons. However, traditional methods of gait analysis are costly and time-consuming, leading to a need for a more convenient and continuous method. This paper proposes a method for analyzing the posture of cerebral palsy patients using only smartphone videos and deep learning models, including a ResNet-based image tilt correction, AlphaPose for human pose estimation, and SmoothNet for temporal smoothing. The indicators employed in medical practice, such as the imbalance angles of shoulder and pelvis and the joint angles of spine-thighs, knees and ankles, were precisely examined. The proposed system surpassed pose estimation alone, reducing the mean absolute error for imbalance angles in frontal videos from 4.196° to 2.971° and for joint angles in sagittal videos from 5.889° to 5.442°.

Evaluation of Deep-Learning Feature Based COVID-19 Classifier in Various Neural Network (코로나바이러스 감염증19 데이터베이스에 기반을 둔 인공신경망 모델의 특성 평가)

  • Hong, Jun-Yong;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.397-404
    • /
    • 2020
  • Coronavirus disease(COVID-19) is highly infectious disease that directly affects the lungs. To observe the clinical findings from these lungs, the Chest Radiography(CXR) can be used in a fast manner. However, the diagnostic performance via CXR needs to be improved, since the identifying these findings are highly time-consuming and prone to human error. Therefore, Artificial Intelligence(AI) based tool may be useful to aid the diagnosis of COVID-19 via CXR. In this study, we explored various Deep learning(DL) approach to classify COVID-19, other viral pneumonia and normal. For the original dataset and lung-segmented dataset, the pre-trained AlexNet, SqueezeNet, ResNet18, DenseNet201 were transfer-trained and validated for 3 class - COVID-19, viral pneumonia, normal. In the results, AlexNet showed the highest mean accuracy of 99.15±2.69% and fastest training time of 1.61±0.56 min among 4 pre-trained neural networks. In this study, we demonstrated the performance of 4 pre-trained neural networks in COVID-19 diagnosis with CXR images. Further, we plotted the class activation map(CAM) of each network and demonstrated that the lung-segmentation pre-processing improve the performance of COVID-19 classifier with CXR images by excluding background features.

Land Use and Land Cover Mapping from Kompsat-5 X-band Co-polarized Data Using Conditional Generative Adversarial Network

  • Jang, Jae-Cheol;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.111-126
    • /
    • 2022
  • Land use and land cover (LULC) mapping is an important factor in geospatial analysis. Although highly precise ground-based LULC monitoring is possible, it is time consuming and costly. Conversely, because the synthetic aperture radar (SAR) sensor is an all-weather sensor with high resolution, it could replace field-based LULC monitoring systems with low cost and less time requirement. Thus, LULC is one of the major areas in SAR applications. We developed a LULC model using only KOMPSAT-5 single co-polarized data and digital elevation model (DEM) data. Twelve HH-polarized images and 18 VV-polarized images were collected, and two HH-polarized images and four VV-polarized images were selected for the model testing. To train the LULC model, we applied the conditional generative adversarial network (cGAN) method. We used U-Net combined with the residual unit (ResUNet) model to generate the cGAN method. When analyzing the training history at 1732 epochs, the ResUNet model showed a maximum overall accuracy (OA) of 93.89 and a Kappa coefficient of 0.91. The model exhibited high performance in the test datasets with an OA greater than 90. The model accurately distinguished water body areas and showed lower accuracy in wetlands than in the other LULC types. The effect of the DEM on the accuracy of LULC was analyzed. When assessing the accuracy with respect to the incidence angle, owing to the radar shadow caused by the side-looking system of the SAR sensor, the OA tended to decrease as the incidence angle increased. This study is the first to use only KOMPSAT-5 single co-polarized data and deep learning methods to demonstrate the possibility of high-performance LULC monitoring. This study contributes to Earth surface monitoring and the development of deep learning approaches using the KOMPSAT-5 data.

Avocado Classification and Shipping Prediction System based on Transfer Learning Model for Rational Pricing (합리적 가격결정을 위한 전이학습모델기반 아보카도 분류 및 출하 예측 시스템)

  • Seong-Un Yu;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.329-335
    • /
    • 2023
  • Avocado, a superfood selected by Time magazine and one of the late ripening fruits, is one of the foods with a big difference between local prices and domestic distribution prices. If this sorting process of avocados is automated, it will be possible to lower prices by reducing labor costs in various fields. In this paper, we aim to create an optimal classification model by creating an avocado dataset through crawling and using a number of deep learning-based transfer learning models. Experiments were conducted by directly substituting a deep learning-based transfer learning model from a dataset separated from the produced dataset and fine-tuning the hyperparameters of the model. When an avocado image is input, the model classifies the ripeness of the avocado with an accuracy of over 99%, and proposes a dataset and algorithm that can reduce manpower and increase accuracy in avocado production and distribution households.