• Title/Summary/Keyword: ResNet-50

Search Result 126, Processing Time 0.025 seconds

Study the mutual robustness between parameter and accuracy in CNNs and developed an Automated Parameter Bit Operation Framework (CNN 의 파라미터와 정확도간 상호 강인성 연구 및 파라미터 비트 연산 자동화 프레임워크 개발)

  • Dong-In Lee;Jung-Heon Kim;Seung-Ho Lim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.451-452
    • /
    • 2023
  • 최근 CNN 이 다양한 산업에 확산되고 있으며, IoT 기기 및 엣지 컴퓨팅에 적합한 경량 모델에 대한 연구가 급증하고 있다. 본 논문에서는 CNN 모델의 파라미터 비트 연산을 위한 자동화 프레임워크를 제안하고, 파라미터 비트와 모델 정확도 사이의 관계를 실험 및 연구한다. 제안된 프레임워크는 하위 n- bit 를 0 으로 설정하여 정보 손실 발생시킴으로써 ImageNet 데이터셋으로 사전 학습된 CNN 모델의 파라미터와 정확도의 강인성을 비트 단위로 체계적으로 실험할 수 있다. 우리는 비트 연산을 수행한 파라미터로 InceptionV3, InceptionResnetV2, ResNet50, Xception, DenseNet121, MobileNetV1, MobileNetV2 모델의 정확도를 평가한다. 실험 결과는 성능이 낮은 모델일수록 파라미터와 정확도 간의 강인성이 높아 성능이 좋은 모델보다 정확도를 유지하는 비트 수가 적다는 것을 보여준다.

Convolution Neural Network Based Auto Classification Model Using Endoscopic Images of Gastric Cancer and Gastric Ulcer (내시경의 위암과 위궤양 영상을 이용한 합성곱 신경망 기반의 자동 분류 모델)

  • Park, Ye Rang;Kim, Young Jae;Chung, Jun-Won;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.101-106
    • /
    • 2020
  • Although benign gastric ulcers do not develop into gastric cancer, they are similar to early gastric cancer and difficult to distinguish. This may lead to misconsider early gastric cancer as gastric ulcer while diagnosing. Since gastric cancer does not have any special symptoms until discovered, it is important to detect gastric ulcers by early gastroscopy to prevent the gastric cancer. Therefore, we developed a Convolution Neural Network (CNN) model that can be helpful for endoscopy. 3,015 images of gastroscopy of patients undergoing endoscopy at Gachon University Gil Hospital were used in this study. Using ResNet-50, three models were developed to classify normal and gastric ulcers, normal and gastric cancer, and gastric ulcer and gastric cancer. We applied the data augmentation technique to increase the number of training data and examined the effect on accuracy by varying the multiples. The accuracy of each model with the highest performance are as follows. The accuracy of normal and gastric ulcer classification model was 95.11% when the data were increased 15 times, the accuracy of normal and gastric cancer classification model was 98.28% when 15 times increased likewise, and 5 times increased data in gastric ulcer and gastric cancer classification model yielded 87.89%. We will collect additional specific shape of gastric ulcer and cancer data and will apply various image processing techniques for visual enhancement. Models that classify normal and lesion, which showed relatively high accuracy, will be re-learned through optimal parameter search.

A Comparative Study on Performance of Deep Learning Models for Vision-based Concrete Crack Detection according to Model Types (영상기반 콘크리트 균열 탐지 딥러닝 모델의 유형별 성능 비교)

  • Kim, Byunghyun;Kim, Geonsoon;Jin, Soomin;Cho, Soojin
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.50-57
    • /
    • 2019
  • In this study, various types of deep learning models that have been proposed recently are classified according to data input / output types and analyzed to find the deep learning model suitable for constructing a crack detection model. First the deep learning models are classified into image classification model, object segmentation model, object detection model, and instance segmentation model. ResNet-101, DeepLab V2, Faster R-CNN, and Mask R-CNN were selected as representative deep learning model of each type. For the comparison, ResNet-101 was implemented for all the types of deep learning model as a backbone network which serves as a main feature extractor. The four types of deep learning models were trained with 500 crack images taken from real concrete structures and collected from the Internet. The four types of deep learning models showed high accuracy above 94% during the training. Comparative evaluation was conducted using 40 images taken from real concrete structures. The performance of each type of deep learning model was measured using precision and recall. In the experimental result, Mask R-CNN, an instance segmentation deep learning model showed the highest precision and recall on crack detection. Qualitative analysis also shows that Mask R-CNN could detect crack shapes most similarly to the real crack shapes.

Accuracy Urinalysis Discrimination Method based on high performance CNN (고성능 CNN 기반 정밀 요검사 판별 기법)

  • Baek, Seung-Hyeok;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.77-82
    • /
    • 2021
  • There are three types of urinalysis: physical test, chemical test, and microscopic test. Among these, the chemical urinalysis is an easily accessible method of the general public to compare the chemical reaction of urinalysis strip with a standard colorimetric table by sight or purchase the portable urinalysis machine separately. Currently, with the popularization of smartphone, research on the urinalysis service using smartphone is increasing. The urinalysis screening application is one of the urinalysis services using a smartphone. However, the RGB values of the urinalysis pad taken by the urinalysis screening application have large deviations due to the effect of lighting. Deviation of RGB value debases the accuracy of urinalysis discrimination. Therefore, in this paper, the accuracy of urinaylsis pad image discrimination is improved through CNN after classifying urinalysis strips taken by the urinalysis screening application based on smartphone by urinalysis pad items. Urinalysis strip was taken from various backgrounds to generate CNN image, and urinalysis discrimination was analyzed using the ResNet-50 CNN model.

Apple Detection Algorithm based on an Improved SSD (개선 된 SSD 기반 사과 감지 알고리즘)

  • Ding, Xilong;Li, Qiutan;Wang, Xufei;Chen, Le;Son, Jinku;Song, Jeong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.81-89
    • /
    • 2021
  • Under natural conditions, Apple detection has the problems of occlusion and small object detection difficulties. This paper proposes an improved model based on SSD. The SSD backbone network VGG16 is replaced with the ResNet50 network model, and the receptive field structure RFB structure is introduced. The RFB model amplifies the feature information of small objects and improves the detection accuracy of small objects. Combined with the attention mechanism (SE) to filter out the information that needs to be retained, the semantic information of the detection objectis enhanced. An improved SSD algorithm is trained on the VOC2007 data set. Compared with SSD, the improved algorithm has increased the accuracy of occlusion and small object detection by 3.4% and 3.9%. The algorithm has improved the false detection rate and missed detection rate. The improved algorithm proposed in this paper has higher efficiency.

A Performance Comparison of Histogram Equalization Algorithms for Cervical Cancer Classification Model (평활화 알고리즘에 따른 자궁경부 분류 모델의 성능 비교 연구)

  • Kim, Youn Ji;Park, Ye Rang;Kim, Young Jae;Ju, Woong;Nam, Kyehyun;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.80-85
    • /
    • 2021
  • We developed a model to classify the absence of cervical cancer using deep learning from the cervical image to which the histogram equalization algorithm was applied, and to compare the performance of each model. A total of 4259 images were used for this study, of which 1852 images were normal and 2407 were abnormal. And this paper applied Image Sharpening(IS), Histogram Equalization(HE), and Contrast Limited Adaptive Histogram Equalization(CLAHE) to the original image. Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity index for Measuring image quality(SSIM) were used to assess the quality of images objectively. As a result of assessment, IS showed 81.75dB of PSNR and 0.96 of SSIM, showing the best image quality. CLAHE and HE showed the PSNR of 62.67dB and 62.60dB respectively, while SSIM of CLAHE was shown as 0.86, which is closer to 1 than HE of 0.75. Using ResNet-50 model with transfer learning, digital image-processed images are classified into normal and abnormal each. In conclusion, the classification accuracy of each model is as follows. 90.77% for IS, which shows the highest, 90.26% for CLAHE and 87.60% for HE. As this study shows, applying proper digital image processing which is for cervical images to Computer Aided Diagnosis(CAD) can help both screening and diagnosing.

Development of Methodology for Measuring Water Level in Agricultural Water Reservoir through Deep Learning anlaysis of CCTV Images (딥러닝 기법을 이용한 농업용저수지 CCTV 영상 기반의 수위계측 방법 개발)

  • Joo, Donghyuk;Lee, Sang-Hyun;Choi, Gyu-Hoon;Yoo, Seung-Hwan;Na, Ra;Kim, Hayoung;Oh, Chang-Jo;Yoon, Kwang-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • This study aimed to evaluate the performance of water level classification from CCTV images in agricultural facilities such as reservoirs. Recently, the CCTV system, widely used for facility monitor or disaster detection, can automatically detect and identify people and objects from the images by developing new technologies such as a deep learning system. Accordingly, we applied the ResNet-50 deep learning system based on Convolutional Neural Network and analyzed the water level of the agricultural reservoir from CCTV images obtained from TOMS (Total Operation Management System) of the Korea Rural Community Corporation. As a result, the accuracy of water level detection was improved by excluding night and rainfall CCTV images and applying measures. For example, the error rate significantly decreased from 24.39 % to 1.43 % in the Bakseok reservoir. We believe that the utilization of CCTVs should be further improved when calculating the amount of water supply and establishing a supply plan according to the integrated water management policy.

A Taekwondo Poomsae Movement Classification Model Learned Under Various Conditions

  • Ju-Yeon Kim;Kyu-Cheol Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.9-16
    • /
    • 2023
  • Technological advancement is being advanced in sports such as electronic protection of taekwondo competition and VAR of soccer. However, a person judges and guides the posture by looking at the posture, so sometimes a judgment dispute occurs at the site of the competition in Taekwondo Poomsae. This study proposes an artificial intelligence model that can more accurately judge and evaluate Taekwondo movements using artificial intelligence. In this study, after pre-processing the photographed and collected data, it is separated into train, test, and validation sets. The separated data is trained by applying each model and conditions, and then compared to present the best-performing model. The models under each condition compared the values of loss, accuracy, learning time, and top-n error, and as a result, the performance of the model trained under the conditions using ResNet50 and Adam was found to be the best. It is expected that the model presented in this study can be utilized in various fields such as education sites and competitions.

Compression of CNN Using Low-Rank Approximation and CP Decomposition Methods (저계수행렬 근사 및 CP 분해 기법을 이용한 CNN 압축)

  • Moon, Hyeon-Cheol;Moon, Gi-Hwa;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.133-135
    • /
    • 2020
  • 최근 CNN(Convolutional Neural Network)은 영상 분류, 객체 인식 등 다양한 비전 분야에서 우수한 성능을 보여주고 있으나, CNN 모델의 계산량 및 메모리가 매우 커짐에 따라 모바일 또는 IoT(lnternet of Things) 장치와 같은 저전력 환경에 적용되기에는 제한이 따른다. 따라서, CNN 모델의 임무 성능을 유지하연서 네트워크 모델을 압축하는 기법들이 연구되고 있다. 본 논문에서는 행렬 분해 기술인 저계수행렬 근사(Low-rank approximation)와 CP(Canonical Polyadic) 분해 기법을 결합하여 CNN 모델을 압축하는 기법을 제안한다. 제안하는 기법은 계층의 유형에 상관없이 하나의 행렬분해 기법만을 적용하는 기존의 기법과 달리 압축 성능을 높이기 위하여 CNN의 계층 타입에 따라 두 가지 분해 기법을 선택적으로 적용한다. 제안기법의 성능검증을 위하여 영상 분류 CNN 모델인 VGG-16, ResNet50, 그리고 MobileNetV2 모델 압축에 적용하였고, 모델의 계층 유형에 따라 두 가지의 분해 기법을 선택적으로 적용함으로써 저계수행렬 근사 기법만 적용한 경우 보다 1.5~12.1 배의 동일한 압축율에서 분류 성능이 향상됨을 확인하였다.

  • PDF

Glaring Wall Pad classification by transfer learning (전이학습을 이용한 전반사가 있는 월패드 분류)

  • Lee, Yong-Jun;Jo, Geun-Sik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.35-36
    • /
    • 2021
  • 딥러닝을 이용한 이미지 처리에서 데이터 셋이 반드시 필요하다. 월패드는 널리 보급되는 다양한 성능을 포함한 IoT가전으로 그 기능의 사용을 돕기 위해서는 해당 월패드에 해당하는 매뉴얼을 제공해야 하고 이를 위해 딥러닝을 이용한 월패드 분류를 이용 할 수 있다. 하지만 월패드 중 일부 모델은 화면의 전반사가 매우 심해 기존의 작은 데이터 셋으로는 딥러닝을 이용한 이미지 분류 성능이 좋지 못하다. 본 논문은 이를 해결하기 위해 추가적으로 데이터 셋을 구축하고 이를 이용해 대규모 데이터로 사전 학습된 VGG16, VGG19, ResNet50, MobileNet 등을 이용해 전이학습을 통해 월패드를 분류한다.

  • PDF