• Title/Summary/Keyword: ResNet-50

Search Result 126, Processing Time 0.024 seconds

Enhanced CT-image for Covid-19 classification using ResNet 50

  • Lobna M. Abouelmagd;Manal soubhy Ali Elbelkasy
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.119-126
    • /
    • 2024
  • Disease caused by the coronavirus (COVID-19) is sweeping the globe. There are numerous methods for identifying this disease using a chest imaging. Computerized Tomography (CT) chest scans are used in this study to detect COVID-19 disease using a pretrain Convolutional Neural Network (CNN) ResNet50. This model is based on image dataset taken from two hospitals and used to identify Covid-19 illnesses. The pre-train CNN (ResNet50) architecture was used for feature extraction, and then fully connected layers were used for classification, yielding 97%, 96%, 96%, 96% for accuracy, precision, recall, and F1-score, respectively. When combining the feature extraction techniques with the Back Propagation Neural Network (BPNN), it produced accuracy, precision, recall, and F1-scores of 92.5%, 83%, 92%, and 87.3%. In our suggested approach, we use a preprocessing phase to improve accuracy. The image was enhanced using the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, which was followed by cropping the image before feature extraction with ResNet50. Finally, a fully connected layer was added for classification, with results of 99.1%, 98.7%, 99%, 98.8% in terms of accuracy, precision, recall, and F1-score.

Performance comparison of wake-up-word detection on mobile devices using various convolutional neural networks (다양한 합성곱 신경망 방식을 이용한 모바일 기기를 위한 시작 단어 검출의 성능 비교)

  • Kim, Sanghong;Lee, Bowon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.454-460
    • /
    • 2020
  • Artificial intelligence assistants that provide speech recognition operate through cloud-based voice recognition with high accuracy. In cloud-based speech recognition, Wake-Up-Word (WUW) detection plays an important role in activating devices on standby. In this paper, we compare the performance of Convolutional Neural Network (CNN)-based WUW detection models for mobile devices by using Google's speech commands dataset, using the spectrogram and mel-frequency cepstral coefficient features as inputs. The CNN models used in this paper are multi-layer perceptron, general convolutional neural network, VGG16, VGG19, ResNet50, ResNet101, ResNet152, MobileNet. We also propose network that reduces the model size to 1/25 while maintaining the performance of MobileNet is also proposed.

A ResNet based multiscale feature extraction for classifying multi-variate medical time series

  • Zhu, Junke;Sun, Le;Wang, Yilin;Subramani, Sudha;Peng, Dandan;Nicolas, Shangwe Charmant
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1431-1445
    • /
    • 2022
  • We construct a deep neural network model named ECGResNet. This model can diagnosis diseases based on 12-lead ECG data of eight common cardiovascular diseases with a high accuracy. We chose the 16 Blocks of ResNet50 as the main body of the model and added the Squeeze-and-Excitation module to learn the data information between channels adaptively. We modified the first convolutional layer of ResNet50 which has a convolutional kernel of 7 to a superposition of convolutional kernels of 8 and 16 as our feature extraction method. This way allows the model to focus on the overall trend of the ECG signal while also noticing subtle changes. The model further improves the accuracy of cardiovascular and cerebrovascular disease classification by using a fully connected layer that integrates factors such as gender and age. The ECGResNet model adds Dropout layers to both the residual block and SE module of ResNet50, further avoiding the phenomenon of model overfitting. The model was eventually trained using a five-fold cross-validation and Flooding training method, with an accuracy of 95% on the test set and an F1-score of 0.841.We design a new deep neural network, innovate a multi-scale feature extraction method, and apply the SE module to extract features of ECG data.

Performance Improvement Analysis of Building Extraction Deep Learning Model Based on UNet Using Transfer Learning at Different Learning Rates (전이학습을 이용한 UNet 기반 건물 추출 딥러닝 모델의 학습률에 따른 성능 향상 분석)

  • Chul-Soo Ye;Young-Man Ahn;Tae-Woong Baek;Kyung-Tae Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1111-1123
    • /
    • 2023
  • In recent times, semantic image segmentation methods using deep learning models have been widely used for monitoring changes in surface attributes using remote sensing imagery. To enhance the performance of various UNet-based deep learning models, including the prominent UNet model, it is imperative to have a sufficiently large training dataset. However, enlarging the training dataset not only escalates the hardware requirements for processing but also significantly increases the time required for training. To address these issues, transfer learning is used as an effective approach, enabling performance improvement of models even in the absence of massive training datasets. In this paper we present three transfer learning models, UNet-ResNet50, UNet-VGG19, and CBAM-DRUNet-VGG19, which are combined with the representative pretrained models of VGG19 model and ResNet50 model. We applied these models to building extraction tasks and analyzed the accuracy improvements resulting from the application of transfer learning. Considering the substantial impact of learning rate on the performance of deep learning models, we also analyzed performance variations of each model based on different learning rate settings. We employed three datasets, namely Kompsat-3A dataset, WHU dataset, and INRIA dataset for evaluating the performance of building extraction results. The average accuracy improvements for the three dataset types, in comparison to the UNet model, were 5.1% for the UNet-ResNet50 model, while both UNet-VGG19 and CBAM-DRUNet-VGG19 models achieved a 7.2% improvement.

Development of Deep Recognition of Similarity in Show Garden Design Based on Deep Learning (딥러닝을 활용한 전시 정원 디자인 유사성 인지 모형 연구)

  • Cho, Woo-Yun;Kwon, Jin-Wook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.96-109
    • /
    • 2024
  • The purpose of this study is to propose a method for evaluating the similarity of Show gardens using Deep Learning models, specifically VGG-16 and ResNet50. A model for judging the similarity of show gardens based on VGG-16 and ResNet50 models was developed, and was referred to as DRG (Deep Recognition of similarity in show Garden design). An algorithm utilizing GAP and Pearson correlation coefficient was employed to construct the model, and the accuracy of similarity was analyzed by comparing the total number of similar images derived at 1st (Top1), 3rd (Top3), and 5th (Top5) ranks with the original images. The image data used for the DRG model consisted of a total of 278 works from the Le Festival International des Jardins de Chaumont-sur-Loire, 27 works from the Seoul International Garden Show, and 17 works from the Korea Garden Show. Image analysis was conducted using the DRG model for both the same group and different groups, resulting in the establishment of guidelines for assessing show garden similarity. First, overall image similarity analysis was best suited for applying data augmentation techniques based on the ResNet50 model. Second, for image analysis focusing on internal structure and outer form, it was effective to apply a certain size filter (16cm × 16cm) to generate images emphasizing form and then compare similarity using the VGG-16 model. It was suggested that an image size of 448 × 448 pixels and the original image in full color are the optimal settings. Based on these research findings, a quantitative method for assessing show gardens is proposed and it is expected to contribute to the continuous development of garden culture through interdisciplinary research moving forward.

Implementation of hand motion recognition-based rock-paper-scissors game using ResNet50 transfer learning (ResNet50 전이학습을 활용한 손동작 인식 기반 가위바위보 게임 구현)

  • Park, Changjoon;Kim, Changki;Son, Seongkyu;Lee, Kyoungjin;Yoo, Heekyung;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.77-82
    • /
    • 2022
  • GUI(Graphical User Interface)를 대신하는 차세대 인터페이스로서 NUI(Natural User Interace)에 기대가 모이는 것은 자연스러운 흐름이다. 본 연구는 NUI의 손가락 관절을 포함한 손동작 전체를 인식시키기 위해 웹캠과 카메라를 활용하여 다양한 배경과 각도의 손동작 데이터를 수집한다. 수집된 데이터는 전처리를 거쳐 데이터셋을 구축하며, ResNet50 모델을 활용하여 전이학습한 합성곱 신경망(Convolutional Neural Network) 알고리즘 분류기를 설계한다. 구축한 데이터셋을 입력시켜 분류학습 및 예측을 진행하며, 실시간 영상에서 인식되는 손동작을 설계한 모델에 입력시켜 나온 결과를 통해 가위바위보 게임을 구현한다.

  • PDF

Violent crowd flow detection from surveillance cameras using deep transfer learning-gated recurrent unit

  • Elly Matul Imah;Riskyana Dewi Intan Puspitasari
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.671-682
    • /
    • 2024
  • Violence can be committed anywhere, even in crowded places. It is hence necessary to monitor human activities for public safety. Surveillance cameras can monitor surrounding activities but require human assistance to continuously monitor every incident. Automatic violence detection is needed for early warning and fast response. However, such automation is still challenging because of low video resolution and blind spots. This paper uses ResNet50v2 and the gated recurrent unit (GRU) algorithm to detect violence in the Movies, Hockey, and Crowd video datasets. Spatial features were extracted from each frame sequence of the video using a pretrained model from ResNet50V2, which was then classified using the optimal trained model on the GRU architecture. The experimental results were then compared with wavelet feature extraction methods and classification models, such as the convolutional neural network and long short-term memory. The results show that the proposed combination of ResNet50V2 and GRU is robust and delivers the best performance in terms of accuracy, recall, precision, and F1-score. The use of ResNet50V2 for feature extraction can improve model performance.

Transfer Learning Using Convolutional Neural Network Architectures for Glioma Classification from MRI Images

  • Kulkarni, Sunita M.;Sundari, G.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.198-204
    • /
    • 2021
  • Glioma is one of the common types of brain tumors starting in the brain's glial cell. These tumors are classified into low-grade or high-grade tumors. Physicians analyze the stages of brain tumors and suggest treatment to the patient. The status of the tumor has an importance in the treatment. Nowadays, computerized systems are used to analyze and classify brain tumors. The accurate grading of the tumor makes sense in the treatment of brain tumors. This paper aims to develop a classification of low-grade glioma and high-grade glioma using a deep learning algorithm. This system utilizes four transfer learning algorithms, i.e., AlexNet, GoogLeNet, ResNet18, and ResNet50, for classification purposes. Among these algorithms, ResNet18 shows the highest classification accuracy of 97.19%.

Real-time mask facial expression recognition using Tiny-YOLOv3 and ResNet50 (Tiny-YOLOv3와 ResNet50을 이용한 실시간 마스크 표정인식)

  • Park, Gyuri;Park, Nayeon;Kim, Seungwoo;Kim, Seunghye;Kim, Jinsan;Ko, Byungchul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.232-234
    • /
    • 2021
  • 최근 휴먼-컴퓨터 인터페이스, 가상현식, 증강현실, 지능형 자동차등에서 얼굴표정 인식에 대한 연구가 활발히 진행되고 있다. 얼굴표정인식 연구는 대부분 맨얼굴을 대상으로 하고 있지만 최근 코로나-19로 인해 마스크 착용한 사람들이 많아지면서, 마스크를 착용했을 때의 표정인식에 대한 필요성이 증가하고 있다. 본 논문은 마스크를 착용했을 때에도 실시간으로 표정 분류가 가능한 시스템개발을 목표로 구동에 필요한 알고리즘을 조사했고, 그 중 Tiny-YOLOv3와 ResNet50 알고리즘을 이용하기로 했다. 얼굴과 표정 데이터셋 등에서 모은 이미지 데이터를 사용하여 실행해 보고 그 적절성 및 성능에 대해 평가해 보았다.

  • PDF

Diabetic Retinopathy Classification with ResNet50 Model Based Multi-Preprocessing (당뇨병성 망막증 분류를 위한 ResNet50 모델 기반 다중 전처리 기법)

  • Da HyunMok;Gyurin Byun;Juchan Kim;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.621-623
    • /
    • 2023
  • 본 연구는 당뇨병성 망막증의 자동 분류를 위해 딥러닝 모델을 활용한다. CLAHE 를 사용한 전처리로 이미지의 대비를 향상시켰으며, ResNet50 모델을 기반으로 한 전이학습을 통해 모델의 성능을 향상했다. 또한, 데이터의 불균형을 고려하여 정확도 뿐만 아니라 민감도와 특이도를 평가함으로써 모델의 분류 성능을 종합적으로 평가하였다. 실험 결과, 제안한 방법은 당뇨병성 망막증 분류 작업에서 높은 정확도를 달성하였으나, 양성 클래스의 식별에서 일부 한계가 있었다. 이에 데이터의 품질 개선과 불균형 데이터 처리에 초점을 맞춘 향후 연구 방향을 제시하였다.