• 제목/요약/키워드: ResNet-50

검색결과 126건 처리시간 0.023초

고추 작물의 정밀 질병 진단을 위한 딥러닝 모델 통합 연구: YOLOv8, ResNet50, Faster R-CNN의 성능 분석 (Integrated Deep Learning Models for Precise Disease Diagnosis in Pepper Crops: Performance Analysis of YOLOv8, ResNet50, and Faster R-CNN)

  • 서지인;심현
    • 한국전자통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.791-798
    • /
    • 2024
  • 본 연구의 목적은 YOLOv8, ResNet50, Faster R-CNN 모델을 활용하여 고추 작물의 질병을 진단하고, 각 모델의 성능을 비교하는 것이다. 첫 번째 모델은 YOLOv8을 사용하여 질병을 진단하였고, 두 번째 모델은 ResNet50을 단독으로 사용하였다. 세 번째 모델은 YOLOv8과 ResNet50을 결합하여 질병을 진단하였으며, 네 번째 모델은 Faster R-CNN을 사용하여 질병을 진단하였다. 각 모델의 성능은 정확도, 정밀도, 재현율, F1-Score 지표로 평가된다. 연구 결과, YOLOv8과 ResNet50을 결합한 모델이 가장 높은 성능을 보였으며, YOLOv8 단독 모델도 높은 성능을 나타냈다.

GAN기반의 Semi Supervised Learning을 활용한 이미지 생성 및 분류 (Image generation and classification using GAN-based Semi Supervised Learning)

  • 정도윤;최광미;김남호
    • 스마트미디어저널
    • /
    • 제13권3호
    • /
    • pp.27-35
    • /
    • 2024
  • 본 연구는 GAN(Generative Adversarial Network)을 기반으로 한 Semi Supervised Learning을 활용하여 이미지 생성과 ResNet50을 이용한 이미지 분류를 결합하는 방법에 대해 다루고 있다. 이를 통해 새로운 접근법을 제시하여 이미지 생성과 분류를 통합함으로써 더 정확하고 다양한 결과를 얻을 수 있도록 하였다. 생성자와 판별자를 학습시켜 생성된 이미지와 실제 이미지를 구별하고, ResNet50을 활용하여 이미지 분류를 수행한다. 실험 결과에서는 생성된 이미지의 품질이 epoch에 따라 변화함을 확인할 수 있었으며, 이를 통해 산업재해 예측 정확성을 향상하고자 한다. 또한, GAN과 ResNet50의 결합을 통해 이미지 생성의 품질을 향상시키고 이미지 분류의 정확도를 높이는 효율적인 방법을 제시하고자 한다.

다양한 CNN 모델을 이용한 얼굴 영상의 나이 인식 연구 (A study on age estimation of facial images using various CNNs (Convolutional Neural Networks))

  • 최성은
    • Journal of Platform Technology
    • /
    • 제11권5호
    • /
    • pp.16-22
    • /
    • 2023
  • 얼굴 영상으로부터 나이를 인식하는 기술의 응용분야가 증가함에 따라 이에 대한 연구가 활발히 진행되고 있다. 얼굴 영상으로부터 나이를 인식하기 위해서는 나이를 표현하는 특징을 추출하고, 추출된 특징으로 나이를 정확하게 분류하는 기술이 필요하다. 최근 영상 인식 분야에서 다양한 CNN 기반 딥러닝 모델이 적용되어 성능이 크게 개선되고 있으며, 얼굴 나이 인식 분야에서도 성능 개선을 위해 다양한 CNN 기반 딥러닝 모델이 적용되고 있다. 본 논문에서는 다양한 CNN 기반 딥러닝 모델의 얼굴 나이 인식 성능을 비교하는 연구를 수행하였다. 영상 인식 분야에서 많이 활용되고 있는 AlexNet, VGG-16, VGG-19, ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152를 활용하여 얼굴 나이 인식을 위한 모델을 구성하고 성능을 비교하였다. 실험 결과에서 ResNet-34를 이용한 얼굴 나이 인식 모델의 성능이 가장 우수하다는 것을 확인하였다.

  • PDF

ResNet-50 모델을 이용한 손글씨 데이터 세트의 분류 성능 분석 및 비교 (Analysis and Comparison of Classification Performance on Handwritten Datasets using ResNet-50 Model)

  • 송제용;시종욱;김성영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.19-20
    • /
    • 2023
  • 본 논문은 손글씨 인식 분야에서 가장 기본적이고 중요한 주제인 손글씨 데이터 세트에 대한 분류 성능을 분석하고 비교하는 것을 목표로 한다. 이를 위해 ResNet-50 모델을 사용하여 MNIST, EMNIST, KMNIST라는 세 가지 대표적인 손글씨 데이터 세트에 대한 분류 작업을 수행한다. 각 데이터 세트의 특징과 도메인, 그리고 데이터 세트 간의 차이와 특징에 대해 다루며, ResNet-50 모델을 학습하고 평가한 분류 성능을 비교하고 결과에 대해 분석한 결과를 제시한다.

  • PDF

심층 네트워크 모델에 기반한 어선 횡동요 시계열 예측 (Fishing Boat Rolling Movement of Time Series Prediction based on Deep Network Model)

  • 김동균;임남균
    • 한국항해항만학회지
    • /
    • 제47권6호
    • /
    • pp.376-385
    • /
    • 2023
  • 통계에 따르면 어선의 전복 사고는 전체 전복 사고의 절반 이상을 차지한다. 이는 미숙한 조업, 기상 악화, 정비 미흡 등 다양한 원인으로 발생할 수 있다. 업계 규모와 영향도, 기술 복잡성, 지역적 다양성 등으로 인해 어선은 상선에 비해 상대적으로 연구가 부족한 실정이다. 본 연구에서는 이미지 기반 딥러닝 모델을 활용하여 어선의 횡동요 시계열을 예측하고자 한다. 이미지 기반 딥러닝은 시계열의 다양한 패턴을 학습하여 높은 성능을 낼 수 있다. 이를 위해 Xception, ResNet50, CRNN의 3가지의 이미지 기반 딥러닝 모델을 활용하였다. Xception과 ResNet50은 각각 177, 184개의 층으로 구성되어 있으며 이에 반해 CRNN은 22개의 비교적 얇은 층으로 구성되어 있다. 실험 결과 Xception 딥러닝 모델이 가장 낮은 0.04291의 sMAPE와 0.0198의 RMSE를 기록하였다. ResNet50과 CRNN은 각각 0.0217, 0.022의 RMSE를 기록하였다. 이를 통해 상대적으로 층이 더 깊은 모델의 정확도가 높음을 확인할 수 있다.

An Experimental Comparison of CNN-based Deep Learning Algorithms for Recognition of Beauty-related Skin Disease

  • Bae, Chang-Hui;Cho, Won-Young;Kim, Hyeong-Jun;Ha, Ok-Kyoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.25-34
    • /
    • 2020
  • 본 논문에서는 딥러닝 지도학습 알고리즘을 사용한 학습 모델을 대상으로 미용 관련 피부질환 인식의 효과성을 실험적으로 비교한다. 최근 딥러닝 기술을 산업, 교육, 의료 등 다양한 분야에 적용하고 있으며, 의료 분야에서는 중요 피부질환 중 하나인 피부암 식별의 수준을 전문가 수준으로 높인 성과를 보이고 있다. 그러나 아직 피부미용과 관련된 질환에 적용한 사례가 다양하지 못하다. 따라서 딥러닝 기반 이미지 분류에 활용도가 높은 CNN 알고리즘을 비롯하여 ResNet, SE-ResNet을 적용하여 실험적으로 정확도를 비교함으로써 미용 관련 피부질환을 판단하는 효과성을 평가한다. 각 알고리즘을 적용한 학습 모델을 실험한 결과에서 CNN의 경우 평균 71.5%, ResNet은 평균 90.6%, SE-ResNet은 평균 95.3%의 정확도를 보였다. 특히 학습 깊이를 다르게하여 비교한 결과 50개의 계층 구조를 갖는 SE-ResNet-50 모델이 평균 96.2%의 정확도로 미용 관련 피부질환 식별을 위해 가장 효과적인 결과를 보였다. 본 논문의 목적은 피부 미용과 관련된 질환의 판별을 고려하여 효과적인 딥러닝 알고리즘의 학습과 방법을 연구하기 위한 것으로 이를 통해 미용 관련 피부질환 개선을 위한 서비스 개발로 확장할 수 있을 것이다.

앙상블 학습 알고리즘을 이용한 컨벌루션 신경망의 분류 성능 분석에 관한 연구 (A Study on Classification Performance Analysis of Convolutional Neural Network using Ensemble Learning Algorithm)

  • 박성욱;김종찬;김도연
    • 한국멀티미디어학회논문지
    • /
    • 제22권6호
    • /
    • pp.665-675
    • /
    • 2019
  • In this paper, we compare and analyze the classification performance of deep learning algorithm Convolutional Neural Network(CNN) ac cording to ensemble generation and combining techniques. We used several CNN models(VGG16, VGG19, DenseNet121, DenseNet169, DenseNet201, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, GoogLeNet) to create 10 ensemble generation combinations and applied 6 combine techniques(average, weighted average, maximum, minimum, median, product) to the optimal combination. Experimental results, DenseNet169-VGG16-GoogLeNet combination in ensemble generation, and the product rule in ensemble combination showed the best performance. Based on this, it was concluded that ensemble in different models of high benchmarking scores is another way to get good results.

Identity-CBAM ResNet 기반 얼굴 감정 식별 모듈 (Face Emotion Recognition using ResNet with Identity-CBAM)

  • 오규태;김인기;김범준;곽정환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.559-561
    • /
    • 2022
  • 인공지능 시대에 들어서면서 개인 맞춤형 환경을 제공하기 위하여 사람의 감정을 인식하고 교감하는 기술이 많이 발전되고 있다. 사람의 감정을 인식하는 방법으로는 얼굴, 음성, 신체 동작, 생체 신호 등이 있지만 이 중 가장 직관적이면서도 쉽게 접할 수 있는 것은 표정이다. 따라서, 본 논문에서는 정확도 높은 얼굴 감정 식별을 위해서 Convolution Block Attention Module(CBAM)의 각 Gate와 Residual Block, Skip Connection을 이용한 Identity- CBAM Module을 제안한다. CBAM의 각 Gate와 Residual Block을 이용하여 각각의 표정에 대한 핵심 특징 정보들을 강조하여 Context 한 모델로 변화시켜주는 효과를 가지게 하였으며 Skip-Connection을 이용하여 기울기 소실 및 폭발에 강인하게 해주는 모듈을 제안한다. AI-HUB의 한국인 감정 인식을 위한 복합 영상 데이터 세트를 이용하여 총 6개의 클래스로 구분하였으며, F1-Score, Accuracy 기준으로 Identity-CBAM 모듈을 적용하였을 때 Vanilla ResNet50, ResNet101 대비 F1-Score 0.4~2.7%, Accuracy 0.18~2.03%의 성능 향상을 달성하였다. 또한, Guided Backpropagation과 Guided GradCam을 통해 시각화하였을 때 중요 특징점들을 더 세밀하게 표현하는 것을 확인하였다. 결과적으로 이미지 내 표정 분류 Task에서 Vanilla ResNet50, ResNet101을 사용하는 것보다 Identity-CBAM Module을 함께 사용하는 것이 더 적합함을 입증하였다.

딥러닝과 의미론적 영상분할을 이용한 자동차 번호판의 숫자 및 문자영역 검출 (Detection of Number and Character Area of License Plate Using Deep Learning and Semantic Image Segmentation)

  • 이정환
    • 한국융합학회논문지
    • /
    • 제12권1호
    • /
    • pp.29-35
    • /
    • 2021
  • 자동차 번호판 인식은 지능형 교통시스템에서 핵심적인 역할을 담당한다. 따라서 효율적으로 자동차 번호판의 숫자 및 문자영역을 검출하는 것은 매우 중요한 과정이다. 본 연구에서는 딥러닝과 의미론적 영상분할 알고리즘을 적용하여 효과적으로 자동차 번호판의 번호영역을 검출하는 방법을 제안한다. 제안된 방법은 화소 투영과 같은 전처리과정 없이 번호판 영상에서 바로 숫자 및 문자영역을 검출하는 알고리즘이다. 번호판 영상은 도로 위에 설치된 고정 카메라로 부터 획득한 영상으로 날씨 및 조명변화 등을 모두 포함한 다양한 실제 상황에서 촬영된 것을 사용하였다. 입력 영상은 색상변화를 줄이기 위해 정규화하고 실험에 사용된 딥러닝 신경망 모델은 Vgg16, Vgg19, ResNet18 및 ResNet50이다. 제안방법의 성능을 검토하기 위해 번호판 영상 500장으로 실험하였다. 학습을 위해 300장을 할당하였으며 테스트용으로 200장을 사용하였다. 컴퓨터모의 실험결과 ResNet50을 사용할 때 가장 우수하였으며 95.77% 정확도를 얻었다.

변형된 잔차블록을 적용한 CNN (CNN Applied Modified Residual Block Structure)

  • 곽내정;신현준;양종섭;송특섭
    • 한국멀티미디어학회논문지
    • /
    • 제23권7호
    • /
    • pp.803-811
    • /
    • 2020
  • This paper proposes an image classification algorithm that transforms the number of convolution layers in the residual block of ResNet, CNN's representative method. The proposed method modified the structure of 34/50 layer of ResNet structure. First, we analyzed the performance of small and many convolution layers for the structure consisting of only shortcut and 3 × 3 convolution layers for 34 and 50 layers. And then the performance was analyzed in the case of small and many cases of convolutional layers for the bottleneck structure of 50 layers. By applying the results, the best classification method in the residual block was applied to construct a 34-layer simple structure and a 50-layer bottleneck image classification model. To evaluate the performance of the proposed image classification model, the results were analyzed by applying to the cifar10 dataset. The proposed 34-layer simple structure and 50-layer bottleneck showed improved performance over the ResNet-110 and Densnet-40 models.