• Title/Summary/Keyword: ResNet Algorithm

Search Result 68, Processing Time 0.025 seconds

Effective Hand Gesture Recognition by Key Frame Selection and 3D Neural Network

  • Hoang, Nguyen Ngoc;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • This paper presents an approach for dynamic hand gesture recognition by using algorithm based on 3D Convolutional Neural Network (3D_CNN), which is later extended to 3D Residual Networks (3D_ResNet), and the neural network based key frame selection. Typically, 3D deep neural network is used to classify gestures from the input of image frames, randomly sampled from a video data. In this work, to improve the classification performance, we employ key frames which represent the overall video, as the input of the classification network. The key frames are extracted by SegNet instead of conventional clustering algorithms for video summarization (VSUMM) which require heavy computation. By using a deep neural network, key frame selection can be performed in a real-time system. Experiments are conducted using 3D convolutional kernels such as 3D_CNN, Inflated 3D_CNN (I3D) and 3D_ResNet for gesture classification. Our algorithm achieved up to 97.8% of classification accuracy on the Cambridge gesture dataset. The experimental results show that the proposed approach is efficient and outperforms existing methods.

Study on Implementation of Restaurant Recommendation System based on Deep Learning-based Consumer Data (딥러닝 기반의 소비자 데이터를 응용한 외식업체 추천 시스템 구현에 관한 연구)

  • Kim, Hee-young;Jung, Sun-mi;Kim, Woo-suk;Ryu, Gi-hwan;Son, Hyeon-kon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.437-442
    • /
    • 2021
  • In this study, a recommendation algorithm was implemented by learning a deep learning-based classification model for consumer data. For this purpose, a meaningful result is presented as a result of learning using ResNet50, which is commonly used in classification tasks by converting user data into images.

Research on Damage Identification of Buried Pipeline Based on Fiber Optic Vibration Signal

  • Weihong Lin;Wei Peng;Yong Kong;Zimin Shen;Yuzhou Du;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.511-517
    • /
    • 2023
  • Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.

A study of interior style transformation with GAN model (GAN을 활용한 인테리어 스타일 변환 모델에 관한 연구)

  • Choi, Jun-Hyeck;Lee, Jae-Seung
    • Journal of KIBIM
    • /
    • v.12 no.1
    • /
    • pp.55-61
    • /
    • 2022
  • Recently, demand for designing own space is increasing as the rapid growth of home furnishing market. However, there is a limitation that it is not easy to compare the style between before construction view and after view. This study aims to translate real image into another style with GAN model learned with interior images. To implement this, first we established style criteria and collected modern, natural, and classic style images, and experimented with ResNet, UNet, Gradient penalty concept to CycleGAN algorithm. As a result of training, model recognize common indoor image elements, such as floor, wall, and furniture, and suitable color, material was converted according to interior style. On the other hand, the form of furniture, ornaments, and detailed pattern expressions are difficult to be recognized by CycleGAN model, and the accuracy lacked. Although UNet converted images more radically than ResNet, it was more stained. The GAN algorithm allowed us to represent results within 2 seconds. Through this, it is possible to quickly and easily visualize and compare the front and after the interior space style to be constructed. Furthermore, this GAN will be available to use in the design rendering include interior.

Indoor Environment Drone Detection through DBSCAN and Deep Learning

  • Ha Tran Thi;Hien Pham The;Yun-Seok Mun;Ic-Pyo Hong
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.439-449
    • /
    • 2023
  • In an era marked by the increasing use of drones and the growing demand for indoor surveillance, the development of a robust application for detecting and tracking both drones and humans within indoor spaces becomes imperative. This study presents an innovative application that uses FMCW radar to detect human and drone motions from the cloud point. At the outset, the DBSCAN (Density-based Spatial Clustering of Applications with Noise) algorithm is utilized to categorize cloud points into distinct groups, each representing the objects present in the tracking area. Notably, this algorithm demonstrates remarkable efficiency, particularly in clustering drone point clouds, achieving an impressive accuracy of up to 92.8%. Subsequently, the clusters are discerned and classified into either humans or drones by employing a deep learning model. A trio of models, including Deep Neural Network (DNN), Residual Network (ResNet), and Long Short-Term Memory (LSTM), are applied, and the outcomes reveal that the ResNet model achieves the highest accuracy. It attains an impressive 98.62% accuracy for identifying drone clusters and a noteworthy 96.75% accuracy for human clusters.

Comparative Learning based Deep Learning Algorithm for Abnormal Beat Detection using Imaged Electrocardiogram Signal (비정상심박 검출을 위해 영상화된 심전도 신호를 이용한 비교학습 기반 딥러닝 알고리즘)

  • Bae, Jinkyung;Kwak, Minsoo;Noh, Kyeungkap;Lee, Dongkyu;Park, Daejin;Lee, Seungmin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • Electrocardiogram (ECG) signal's shape and characteristic varies through each individual, so it is difficult to classify with one neural network. It is difficult to classify the given data directly, but if corresponding normal beat is given, it is relatively easy and accurate to classify the beat by comparing two beats. In this study, we classify the ECG signal by generating the reference normal beat through the template cluster, and combining with the input ECG signal. It is possible to detect abnormal beats of various individual's records with one neural network by learning and classifying with the imaged ECG beats which are combined with corresponding reference normal beat. Especially, various neural networks, such as GoogLeNet, ResNet, and DarkNet, showed excellent performance when using the comparative learning. Also, we can confirmed that GoogLeNet has 99.72% sensitivity, which is the highest performance of the three neural networks.

A Defect Detection Algorithm of Denim Fabric Based on Cascading Feature Extraction Architecture

  • Shuangbao, Ma;Renchao, Zhang;Yujie, Dong;Yuhui, Feng;Guoqin, Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.109-117
    • /
    • 2023
  • Defect detection is one of the key factors in fabric quality control. To improve the speed and accuracy of denim fabric defect detection, this paper proposes a defect detection algorithm based on cascading feature extraction architecture. Firstly, this paper extracts these weight parameters of the pre-trained VGG16 model on the large dataset ImageNet and uses its portability to train the defect detection classifier and the defect recognition classifier respectively. Secondly, retraining and adjusting partial weight parameters of the convolution layer were retrained and adjusted from of these two training models on the high-definition fabric defect dataset. The last step is merging these two models to get the defect detection algorithm based on cascading architecture. Then there are two comparative experiments between this improved defect detection algorithm and other feature extraction methods, such as VGG16, ResNet-50, and Xception. The results of experiments show that the defect detection accuracy of this defect detection algorithm can reach 94.3% and the speed is also increased by 1-3 percentage points.

Apple Detection Algorithm based on an Improved SSD (개선 된 SSD 기반 사과 감지 알고리즘)

  • Ding, Xilong;Li, Qiutan;Wang, Xufei;Chen, Le;Son, Jinku;Song, Jeong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.81-89
    • /
    • 2021
  • Under natural conditions, Apple detection has the problems of occlusion and small object detection difficulties. This paper proposes an improved model based on SSD. The SSD backbone network VGG16 is replaced with the ResNet50 network model, and the receptive field structure RFB structure is introduced. The RFB model amplifies the feature information of small objects and improves the detection accuracy of small objects. Combined with the attention mechanism (SE) to filter out the information that needs to be retained, the semantic information of the detection objectis enhanced. An improved SSD algorithm is trained on the VOC2007 data set. Compared with SSD, the improved algorithm has increased the accuracy of occlusion and small object detection by 3.4% and 3.9%. The algorithm has improved the false detection rate and missed detection rate. The improved algorithm proposed in this paper has higher efficiency.

A Computer Aided Diagnosis Algorithm for Classification of Malignant Melanoma based on Deep Learning (딥 러닝 기반의 악성흑색종 분류를 위한 컴퓨터 보조진단 알고리즘)

  • Lim, Sangheon;Lee, Myungsuk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.69-77
    • /
    • 2018
  • The malignant melanoma accounts for about 1 to 3% of the total malignant tumor in the West, especially in the US, it is a disease that causes more than 9,000 deaths each year. Generally, skin lesions are difficult to detect the features through photography. In this paper, we propose a computer-aided diagnosis algorithm based on deep learning for classification of malignant melanoma and benign skin tumor in RGB channel skin images. The proposed deep learning model configures the tumor lesion segmentation model and a classification model of malignant melanoma. First, U-Net was used to segment a skin lesion area in the dermoscopic image. We could implement algorithms to classify malignant melanoma and benign tumor using skin lesion image and results of expert's labeling in ResNet. The U-Net model obtained a dice similarity coefficient of 83.45% compared with results of expert's labeling. The classification accuracy of malignant melanoma obtained the 83.06%. As the result, it is expected that the proposed artificial intelligence algorithm will utilize as a computer-aided diagnosis algorithm and help to detect malignant melanoma at an early stage.

Image-Based Machine Learning Model for Malware Detection on LLVM IR (LLVM IR 대상 악성코드 탐지를 위한 이미지 기반 머신러닝 모델)

  • Kyung-bin Park;Yo-seob Yoon;Baasantogtokh Duulga;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.31-40
    • /
    • 2024
  • Recently, static analysis-based signature and pattern detection technologies have limitations due to the advanced IT technologies. Moreover, It is a compatibility problem of multiple architectures and an inherent problem of signature and pattern detection. Malicious codes use obfuscation and packing techniques to hide their identity, and they also avoid existing static analysis-based signature and pattern detection techniques such as code rearrangement, register modification, and branching statement addition. In this paper, We propose an LLVM IR image-based automated static analysis of malicious code technology using machine learning to solve the problems mentioned above. Whether binary is obfuscated or packed, it's decompiled into LLVM IR, which is an intermediate representation dedicated to static analysis and optimization. "Therefore, the LLVM IR code is converted into an image before being fed to the CNN-based transfer learning algorithm ResNet50v2 supported by Keras". As a result, we present a model for image-based detection of malicious code.