• Title/Summary/Keyword: Requirement Definition Process

Search Result 41, Processing Time 0.023 seconds

System Requirement Architecture Modeling of KT-1 Export Version (수출용 KT-1 요구사항 아키텍처 모델 구축)

  • Kang, Min-Seong;Lee, Jin-Kyun;Kim, Jin-Suk;Shon, Hwan-Ick;Kang, Young-Ho;Lee, Joong-Yoon;Choi, Min-Shin;Lee, Young-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.135-143
    • /
    • 2006
  • This paper describes a requirement architecture modeling for the front end of KT-1 export version requirement definition processes to construct SDS(system development specification). The requirement definition process is a highly conceptual process that is difficult to carry out. This paper focuses on how to perform the KT-1 export version requirements definition process including the integration of process, methods and tools for the front-end activity of requirements definition process. This requirement model is structured in four segments, including requirement layering, requirement categorization, life cycle stakeholder and requirement definition process using Computer-Aided Systems Engineering tool(CORE).

System Requirement Definition Process from Operational Concept and The Application Case-Study of ATACMS (운용 개념에서 시스템 요구사항을 정의하는 프로세스의 개발 및 특정 유도무기(ATACMS) 적용 사례)

  • 이중윤;박영원
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.22-35
    • /
    • 2003
  • This paper describes system technical requirement development process from operational concept using computer-aided Systems Engineering tool(CASysE Tool-CORE). The army tactical missile system-ATACMS's technical requirements are developed by the process as a case-study The scope of the work is context analysis and requirement definition process. The proposed process is as follows. At first, an integrated architecture could be developed from the operational concept. From the integrated architecture a capability needs, which includes KPPs, are generated. And the capability needs expanded according to the Mil-Std-961D format. Lastly, a system technical requirement could be generated automatically from the CASysE Tool-CORE.

TRIZ Problem Definition through Requirements Engineering (요건공학을 통한 TRIZ 문제정의)

  • Jeong, Jin-Ha;Park, Young-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.440-448
    • /
    • 2010
  • Recently, there are many corporations, schools and institutes that apply TRIZ to solve technical problems. However, in reality, only a few cases of brainstorming applications exist in utilizing forty principles of TRIZ due to the difficulty at TRIZ problem definition. In order to facilitate TRIZ applications, this study proposes the utilization of requirement definition and description tool of systems engineering in TRIZ problem definition. No requirement definition exists in general problem types that TRIZ approach is used in implementing system solution. At most of problem situations, TRIZ users reversely infer that certain problem belongs to which requirement definition it is and recommends TRIZ tools to be used for the exact problem definition. This study also proposes TRIZ problem definition method by applying the results of requirement definition process. The application of TRIZ is demonstrated to the general situation with no problem definition where the proposed method enables the proper use of TRIZ.

Application of AI Technology in Requirements Analysis and Architecture Definition - status and prospects (요구사항 분석 및 아키텍처 정의 분야의 인공지능 적용 현황 및 방향)

  • Jin Il, Kim;Choong Sub, Yeum;Joong Uk, Shin
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.50-57
    • /
    • 2022
  • Along with the development of the 4th Industrial Revolution technology, artificial intelligence technology is also being used in the field of systems engineering. This study analyzed the development status of artificial intelligence technology in the areas of systems engineering core processes such as stakeholder needs and requirements definition, system requirement analysis, and system architecture definition, and presented future technology development directions. In the definition of stakeholder needs and requirements, technology development is underway to compensate for the shortcomings of the existing requirement extraction methods. In the field of system requirement analysis, technology for automatically checking errors in individual requirements and technology for analyzing categories of requirements are being developed. In the field of system architecture definition, a technology for automatically generating architectures for each system sector based on requirements is being developed. In this study, these contents were summarized and future development directions were presented.

A Methodology for Ontology-based Service Drawing for SOA (SOA를 위한 온톨로지 기반의 서비스 도출 방법론)

  • Jang, Ryo-Sun;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Information Technology Services
    • /
    • v.10 no.2
    • /
    • pp.309-327
    • /
    • 2011
  • Even though several methodologies for SOA(Service Oriented Architecture) have been proposed, in practical aspects most of them have some problems since they fail to propose specific policies in definition and identification of a service. This paper proposes a service modeling methodology. SOMO(Service Oriented Modeling using Ontology), which draws proper services in the process of defining and identifying services. SOMO defines a service ontology based on service definition and characteristics in SOA. The service drawing process consists of 3 steps : requirement analysis, service identification, and service definition. SOMO is expected to increase the degree of reuse and facilitates the definition and search of services by using service ontology. In addition, it clearly allows the definition and identification of services, satisfying the user requirements.

A Study on Application of Systems Approach for Laser Micro Machining Design Process (시스템적 접근을 통한 레이저 미세가공 설계 프로세스 개발에 관한 연구)

  • Moon, Seong-Wook;Park, Young-Won;Nam, Gi-Jung
    • Laser Solutions
    • /
    • v.10 no.3
    • /
    • pp.15-24
    • /
    • 2007
  • In this paper laser micromachining system design process for commercialization is suggested. The constructed system design process is properly adjusted for laser micromachining area after tailoring engine process of system engineering process such as requirement analysis, functional analysis and allocation, system synthesis and system optimization process. In the current laser machining system design, system components and specifications are determined on the basis of experimental experience which a laser is being used in machining some materials as well as the current machining and research trend. In this paper, however, systematic process is suggested in addition to experimental experience, which the laser and system components and their specifications are decided in the process of definition of functional requirements and engine design variables of system to satisfy the customer's requirements.

  • PDF

Application of Systems Engineering in SURION R&D Project (수리온 체계개발에서의 시스템엔지니어링 적용사례)

  • Kim, Jin Hoon;Rhee, Dong Wook
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.81-86
    • /
    • 2014
  • Systems Engineering application focused on requirement definition and management for SURION System Development Project is described in this paper. To perform the development process effectively based on systems engineering processes; Requirements Definition, Design Review, Configuration Management, Quality Assurance, Data Management, are applied in this project. In this processes, the Stakeholder's Requirements are transferred to Specifications verified with design reviews, prototyping inspections, and integration tests. All engineering data, especially verification plan & results are recorded, and traced to each requirements of system specification in Surion database. Therefore, it could be assured that all requirements of specification are evaluated and verified successfully in Surion Project.

Intelligent Hospital Concept Definition by Implementing Quality Function Deployment And System Requirement Analysis (QFD(Quality Function Deployment)와 시스템 요구분석 기법을 이용한 지능형 병원 시스템 개념 정립)

  • Lee, Jun Ho;Kim, Dae Hong;Jin, Kyung Hoon;Ham, Jae Bok;Lee, Jae Woo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • In this study, the design concepts for Intelligent Hospital are derived using the Quality Function Deployment(QFD) and System Requirement Analysis Method. First, requirements for important elements of Intelligent hospital are defined. Second, similar systems are compared and user requirement are refined. Through this process, operational requirement for Intelligent Hospital are defined by combining user requirements and similar systems. To analyze operational requirement, the QFD of the system engineering approach are implemented. Alternative design specifications are constructed by implementing the QFD results by building the Morphological Matrix. Various concepts that satisfy the system requirement are derived. Finally the best design concept are obtained using the Pugh concept selection matrix.

  • PDF

A Case Study on the Application of Systems Engineering to the Development of PHWR Core Management Support System (시스템엔지니어링 기법을 적용한 가압중수로 노심관리 지원시스템 개발 사례)

  • Yeom, Choong Sub;Kim, Jin Il;Song, Young Man
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.33-45
    • /
    • 2013
  • Systems Engineering Approach was applied to the development of operator-support core management system based on the on-site operation experience and document of core management procedures, which is for enhancing operability and safety in PHWR (Pressurized Heavy Water Reactor) operation. The dissertation and definition of the system were given on th basis of investigating and analyzing the core management procedures. Fuel management, detector calibration, safety management, core power distribution monitoring, and integrated data management were defined as main user's requirements. From the requirements, 11 upper functional requirements were extracted by considering the on-site operation experience and investigating documents of core management procedures. Detailed requirements of the system which were produced by analyzing the upper functional requirements were identified by interviewing members who have responsibility of the core management procedures, which were written in SRS (Software Requirement Specification) document by using IEEE 830 template. The system was designed on the basis of the SRS and analysis in terms of nuclear engineering, and then tested by simulation using on-site data as a example. A model of core power monitoring related to the core management was suggested and a standard process for the core management was also suggested. And extraction, analysis, and documentation of the requirements were suggested as a case in terms of systems engineering.

Design and Analysis of NCP Packaging Process for Fine-Pitch Flexible Printed Circuit Board (미세피치 연성인쇄회로기판 대응을 위한 NCP 패키징 공정설계 및 분석)

  • Shim, Jae-Hong;Cha, Dong-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.172-176
    • /
    • 2010
  • Recently, LCD (Liquid Crystal Display) requires various technical challenges; high definition, high quality, big size, and low price. These demands more pixels in the fixed area of the LCD and very fine lead pitch of the driving IC which controls the pixels. Therefore, a new packaging technology is needed to meet such technical requirement. NCP (Non Conductive Paste) is one of the new packaging methods and has excellent characteristics to overcome the problems of the ACF (Anisotropic Conductive Film). In this paper, we analyzed the process of the NCP for COF (Chip on FPCB) and proposed the key design parameters of the NCP process. Through a series of experiments, we obtained the stable values of the design parameters for successful NCP process.