• Title/Summary/Keyword: Requirement Analysis

Search Result 2,430, Processing Time 0.027 seconds

Finite Element Analysis for Satellite Antenna Structures Subject to Forced Sinusoidal Vibration (위성 안테나 구조물의 정현파 강제 진동에 대한 유한 요소 해석)

  • Shin, Won-Ho;Oh, Il-Kon;Han, Jae-Hung;Oh, Se-Hee;Lee, In;Kim, Chun-Gon;Park, Jong-Heung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.13-18
    • /
    • 2001
  • This paper deals with finite element analysis for free vibration and forced sine vibration of Ka- and Ku- bend antenna structures using MSC/PATRAN/NASTRAN. The structures are designed to satisfy minimum resonance frequency requirement in order to decouple the dynamic interaction of the satellite with the spacecraft bus structure. From the forced sinusoidal vibration, we have observed output acceleration versus input in X-,Y- and Z- direction, based on base excitation using large mass method. The results of finite elements analysis can be used as the reference data for the experimental test of satellite antenna, resulting in the reduction of cost and time by predicting and complementing experimental data.

  • PDF

Development of Helicopter Design and Analysis Program for Helicopter Conceptual Design (헬리콥터 개념설계를 위한 설계 및 분석 프로그램 개발)

  • Ko, Kang-Myung;Kang, Seung-On;Kim, Sang-Hun;Lee, Dong-Ho;Chang, Yong-Jin;Choi, Won;Hwang, Yu-Sang;Kim, Cheol-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1595-1600
    • /
    • 2007
  • It is necessary a simple helicopter design and performance analysis program for a stage of helicopter conceptual design. To meet that needs, we have developed a program which is simply used to estimate helicopter configuration and performance. The program developed by this study is composed of Requirement, Mission profile Analysis, Size, Aerodynamic, Trim, Propulsion, Weight, and Performance modules, and each modules carry out operations for a given flight condition. In this study, we validate this analysis program in 9,500 1bs and 22,000 1bs helicopters and estimate design configuration and performance of 16,000 1b helicopter. And We can use this program to optimization process for Helicopter MDO framework.

  • PDF

A Study on Critical Success Factor Analysis and its Usage : An Aplication Study to the Steel Industry in Korea (주요성과요인분석과 그 활용방안에 관한 연구 :한국 철강산업에의 적용사례)

  • 문태수;신영종
    • Korean Management Science Review
    • /
    • v.8 no.1
    • /
    • pp.13-25
    • /
    • 1991
  • Over the past few years, there has been a growing interest in using information technology for competitive advantage. A sustainable advantage is the key to the survival and growth of a firm. The successful implementation of information technology is dependent on efficient information systems planning. But the correct and complete information, requirements for effective information systems planning are frequently very difficult to obtain. In this paper the Critical Success Factors(CSF) method was employed as a means of managerial information requirements analysis for information systems planning in Korea's steel industry. CSFs are one of the few areas of activity that must go well to ensure the success of an organization. This paper addresses the concept and hierarchy of CSF analysis as a methodology in identifying corporate information needs and concludes with the use and benefit of results of CSF analysis.

  • PDF

Model Analysis of Reinforced Concrete Structure (철근 콘크리트 구조물의 모델거동에 관한 연구)

  • 오병환;김배식;이명규;전세진;김광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.193-197
    • /
    • 1995
  • Computer-based methods have often been used in the structural analysis. But, regardless of the progress in the technique of structural analysis, there are inevitable limitations in consideration of the material and eometric nonlinearity and prediction of failure loads. Model analysis of concrete structure can supplement this kind of limitations to reasonably predict behavior of the structure. Similitude requirement in the reinforced concrete structure is often hard to be secured because of peculiar uncertainty of concrete. In this study, small scale model of subway box structure was constructed using strength model and results of model of subway box structure was constructed using strength model and results of model test and computer-based analysis were compared.

  • PDF

Determination Method of Centerpost Distance of Interior Permanent Magnet Synchronous Motor for Electric Vehicle Traction Motor considering Mechanical Safety

  • Kim, Sung-Jin;Kim, Yong-Jae;Jung, Sang-Yong;Suzuki, Kenji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • With the active development of hybrid electric vehicle (HEV), the application of interior permanent magnet synchronous motor (IPMSM) has been expanded. As wide driving region of IPMSM for electric vehicle (EV) traction motor is required, many studies are conducted to improve characteristics of a motor in both low and high-speed driving regions. A motor in high-speed driving region generates (produces) large stress to the rotor. Thus, the rotor needs to be designed considering the mechanical safety. Therefore, in this paper, we conducted stress analysis and electromagnetic analysis to determine the centerpost's distance which is considered important during the design of IPMSM for EV traction motor in order to secure mechanical safety and satisfy specifications of output requirement.

A Study on the Safety Demonstration of Train Control System (열차제어시스템의 안전입증에 관한 연구)

  • Shin Duc-Ko;Lee Jae-Ho;Lee Kang-Mi;Hwang Jong-Kyu;Joung Eui-Jin;Wang Jong-Bae;Park Young-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.412-418
    • /
    • 2006
  • In this paper we deal with the APARP theory which has been applied for UK railway system and risk assessment method which has been using in the domestic railway system for the safety demonstration. Both techniques are applied to the ATP wayside equipment for interface. Also, fur the applications of each techniques a analysis of the safety activity and a possibility of the application of ALARP theory are evaluated. Finally, we generate requirements of the safety demonstration for the future domestic railway system by way of the analysis of some assumptions and requirement data which can be applied to the risk assessment of ALARP.

Functional analysis of Avionics system for an air transport mission (항공 수송 임무 수행을 위한 Avionics 시스템의 기능 분석)

  • Song, Yun-Sub
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.3
    • /
    • pp.40-50
    • /
    • 2009
  • Avionics system's function for an air transport mission is analysed. The starting point for designing a Avionics system is a clear understanding of the mission requirements and the requirement allocation by the top level aircraft system. Therefore, the analysis begins by making a top-down analysis to the aircraft missions. The baseline mission is divided into segments, and each segment is subjected to a detailed analysis to establish the requirements for the Avionics system. Special attention is given to capture the key aspects of interfaces, and to incorporate them into the design.

  • PDF

Static Test and Analysis of Wing Support Structure for External Stores (외부장착물지지 주익구조 정적 시험 및 해석)

  • Uhm, Wonseop;Yoon, Jongmin
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Armed aircraft of a basic trainer class installs external stores under wing box by using pylon and performs an operation such as weapon delivery and jettison, and should be designed to withstand all kinds of loads applied to external stores. The static strength test of pylons and wing box was performed to assess the static strength of pylon and their support structures for substantiation. Based on the test, the structures were verified to fully satisfy a given design requirement. In this paper, methods of test load generation of wing box and pylon, evaluation of test result data and design result of test set-up were presented. Comparing the FEM analysis with the same test data can lead to good match and reasonable deviation between both. Finally, based on the test and the analysis, the static strength of test article was substantiated and the reliability and effectiveness of analysis math model were obtained.

3D Transient Analysis of Linear Induction Motor Using the New Equivalent Magnetic Circuit Network Method

  • Jin Hur;Kang, Gyu-Hong;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.122-127
    • /
    • 2003
  • This paper presents a new time-stepping 3-D analysis method coupled with an external circuit with motion equation for dynamic transient analysis of induction machines. In this method, the magneto-motive force (MMF) generated by induced current is modeled as a passive source in the magnetic equivalent network. So, by using only scalar potential at each node, the method is able to analyze induction machines with faster computation time and less memory requirement than conventional numerical methods. Also, this method is capable of modeling the movement of the mover without the need for re-meshing and analyzing the time harmonics for dynamic characteristics. From comparisons between the results of the analysis and the experiments, it is verified that the proposed method is capable of estimating the torque, harmonic field, etc. as a function of time with superior accuracy.

A variable layering system for nonlinear analysis of reinforced concrete plane frames

  • Shuraim, Ahmed B.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.17-34
    • /
    • 2001
  • An improved method has been developed for the computation of the section forces and stiffness in nonlinear finite element analysis of RC plane frames. The need for a new approach arises because the conventional technique may have a questionable level of efficiency if a large number of layers is specified and a questionable level of accuracy if a smaller number is used. The proposed technique is based on automatically dividing the section into zones of similar state of stress and tangent modulus and then numerically integrating within each zone to evaluate the sectional stiffness parameters and forces. In the new system, the size, number and location of the layers vary with the state of the strains in the cross section. The proposed method shows a significant improvement in time requirement and accuracy in comparison with the conventional layered approach. The computer program based on the new technique has been used successfully to predict the experimental load-deflection response of a RC frame and good agreement with test and other numerical results have been obtained.