• Title/Summary/Keyword: Required velocity

Search Result 984, Processing Time 0.026 seconds

Compressibility correction of the Panel Method in Flow Analysis of a High Subsonic Turbine Cascade (고 아음속 터빈 캐스케이드 유동 해석을 위한 패널법의 압출성 보정)

  • Kim, Hark-Bong;Kim, Jin-Kon;Kwak, Jae-Su;Kang, Jeong-Seek
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • Flow analysis in a turbine cascade by Euler or Navier-Stokes equation gives relatively accurate solution, however, those method require large computer memory or computing time. On contrast, the panel method, which is applied to incompressible and inviscid flow, provides fast and reasonal solution but the compressibility correction is required for a high air velocity case. In this paper, the compressibility corrected panel method was applied in order to find velocity distribution on turbine blades. Results showed that the calculated velocity in a turbine cascade by the compressibility corrected panel method gave good agreement with the solution by finite volume method for compressible flow.

Friction Characteristics of Magnetic Clutch Used in Automobiles (차량용 마그네틱 클러치의 마찰 특성)

  • Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.243-249
    • /
    • 2009
  • A magnetic clutch consists of pulley and disk. It delivers and isolates the power needed for the operation of the compressor used in automotive air conditioning system. To improve the performance, efficiency and durability of automotive air conditioning system, appropriate design of pulley, disk and system working parameters(the magnitude of magnetic force, and so on) is necessary. For that goal, it is required to understand the friction characteristics of magnetic clutch for the initial operating time. In this study, friction tests were carried out in order to investigate the effect of sliding velocity on the friction characteristics of magnetic clutch using pin-on-disk type friction and wear tester. For experiments, pulley and disk used in real automotive air conditioning system were considered. Friction experiments were conducted under various sliding velocities, and coefficients of kinetic friction were obtained. Under the experimental conditions considered in this study, the coefficients of kinetic friction increased with the increase of test number(sliding distance) and decreased with the increase of sliding velocity.

Predictive Study of Rubber Friction Considering Large Deformation Contact (대변형 접촉을 고려한 고무 마찰 예측 연구)

  • Nam, Seungkuk
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper presents the analysis of friction master curves for a sliding elastomer on rough granite. The hysteresis friction is calculated using an analytical model that considers the energy spent during the local deformation of the rubber due to surface asperities. The adhesion friction is also considered for dry friction prediction. The viscoelastic modulus of the rubber compound and the large-strain effective modulus are obtained from dynamic mechanical analysis (DMA). We accurately demonstrate the large strain of rubber that contacts with road substrate using the GW theory. We found that the rubber block deforms approximately to 40% strain. In addition, the viscoelastic master curve considering nonlinearity (at 40% strain) is derived based on the above finding. As viscoelasticity strongly depends on temperature, it can be assumed that the influence of velocity on friction is connected to the viscoelastic shift factors gained from DMA using the time-temperature superposition. In this study, we apply these shift factors to measure friction on dry granite over a velocity range for various temperatures. The measurements are compared to simulated hysteresis and adhesion friction using the Kluppel friction theory. Although friction results in the low-speed band match well with the simulation results, there are differences in the predicted and experimental results as the velocity increases. Thus, additional research is required for a more precise explanation of the viscoelastic material properties for better prediction of rubber friction characteristics.

Vibration Reducing Method for High Pressure Feedwater Heater Drain Piping System (고압급수가열기 배수계통 배관계 고진동 해소방안 연구)

  • Lee, Wook-Ryun;Lee, Jun-Shin;Kim, Sang-Bok;Hong, Soon-Bup;Shin, Yong-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1290-1295
    • /
    • 2006
  • The 120 meters high pressure feedwater heater drain piping in nuclear power plant had been suffered by excessive vibration from the beginning of power generation. As time goes by, the piping vibration was beyond the allowable limit and an appropriate countermeasure was required to prevent the fatigue failure of the pipeline from the abnormal vibration. In this study, the vibrational characteristics of high pressure feedwater heater drain piping and the countermeasure for abnormal vibration were investigated. Among the several vibration reduction methods, the piping layout changed by making the smooth pipeline was applied to the high Pressure feedwater heater drain piping in nuclear Power plant. Applying the countermeasure, the vibration level was found to reduce over 54 percents and was satisfied under the allowable velocity at the full-power operation condition.

  • PDF

Control System of Throttle Actrator for TCS (TCS용 스로틀 액츄에이터 제어 시스템)

  • 송재복;김효준;민덕인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Accurate positioning of a throttle valve is required to implement the traction control system(TCS) which improves acceleration performance in slippery roads. In this research, position control system is developed for the main throttle actuator(MTA) system which uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Digital PID control law is used as basic control algorithm. In order to prevent overshoot and improve accuracy, velocity profiles are generated and implemented whenever the targer throttle angle is given from the TCS controller. Thanks to velocity profiles, the control performance was very good and only one set of PID gains was used to cover the entire operating range. Also, the resolution of position is about 0.4$^{\circ}C$, which is better than that of stepping motor also used as throttle actuator in some products. The response time of the developed system is also fast enough to implement the engine control based TCS algorithm.

  • PDF

A study on the removal of particulate matters using unidirectional flushing (단방향 플러싱에 의한 입자성 물질의 제거에 관한 연구)

  • Kim, Dooil;Cheon, Subin;Hyun, Inhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.371-380
    • /
    • 2015
  • Particulate matters in a water distribution system are main causes of turbidity and discoloration of tap water. They could be removed by conventional or uni-directional flushing in a water distribution system. The behaviors and required flow velocity of particles are not well known for their flushing. A model water main and hydrant were made from transparent acrylic pipe of 30mm and 16mm in diameter, respectively. We analyzed the effect of flushing velocity, particle density, and particle diameter. We found that the existence of break-though velocities at which particles begin to be removed, and which are affected by their physical properties. The removal efficiencies seemed to be influenced by resuspension capabilities related to their upward movement from the bottom. Heavy particles like scale were hard to remove through upflow hydrant because the falling velocity, calculated using Stokes' law, was higher. Particle removal efficiencies of upward hydrant and downward drain showed minor differences. Additionally, the length between hydrant and control valve affected flushing efficiency because the particulate matters were trapped in this space by inertia and recirculating flow.

A Study on the Kinetodynamic Analysis for General Disk Cam Driving Slider Mechanisms (캠구동 슬라이더기구의 기구동역학 해석에 관한 연구)

  • Shin, Joong-Ho;Kim, Jong-Soo;Ha, Kyong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.871-883
    • /
    • 1997
  • Kinetodynamics of a cam driving slider mechanism consists of kinematic analysis and force analysis. The kinematic analysis is to determine the kinematic characteristics of a cam driving mechanism and a slider mechanism. The force analysis is to determine the joint forces of links, the contact forces of the cam and follower, and the driving torque of a main shaft. This paper proposes a close loop method and a tangent substitution method to formulate the relationships of kinematic chains and to calculate the displacement, velocity and acceleration of the cam driving slider mechanism. Also, and instant velocity center method is proposed to determine the cam shape from the geometric relationships of the cam and the roller follower. For dynamic analysis, the contact force and the driving torque of the cam driving slider mechanism are calculated from the required sliding forces, sliding motion and weight of the slider.

Development of Lane Change System considering Acceleration for Collision Avoidance (충돌회피를 위한 가속도를 고려한 차선 변경 시스템 개발)

  • Kang, Hyunkoo;Lee, Donghwi;Huh, Kunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • This paper presents the lane change system for collision avoidance. The proposed algorithm for the collision avoidance consists of path generation and path following. Using a calculated TTC (Time to Collision), partial braking is operated and collision avoidance path is generated considering relative distance, velocity and acceleration. Based on the collision avoidance path, desired yaw angle and yaw rate are calculated for the automated path following. The lateral controller is designed by a Lyapunov function approach using 3 D.O.F vehicle model and vehicle parameters. The required steering angle is determined from wheel velocity, longitudinal and lateral velocity in order to follow the desired yaw angle and yaw rate. This system is developed MATLAB/Simulink and its performance is evaluated using the commercial software CarSim.

Anti-sway Control of Crane System Using Hybrid Control Method (하이브리드 방식을 이용한 크레인의 앤티스웨이 제어)

  • Park, H.S.;Kim, H.S.;Park, J.H.;Lee, D.H.;Kim, S.B.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.67-72
    • /
    • 1998
  • In crane control system, it is required that the travelling time of crane must be reduced as much as possible and there is no the swing of load at the end and starting points. In this paper, we present a hybrid control method which includes two control methods of the optimal regulator and the velocity pattern control in order to realize high performance of the anti-sway. To implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the linear time invariant state equation can be obtained. A 1/10 sized model crane of the usual gantry cranes is made and used to show the applicability of the developed hybrid control method. The effectiveness of developed hybrid control method is proved by experimental results which show us good performance for anti-sway control comparing to conventional velocity pattern control. Practically, it is expected that the proposed control system will make an important contribution to the automatic crane control system of the industrial fields.

  • PDF

Effect of Vanes on Flow Distribution in a Diffuser Type Recuperator Header (디퓨저 타입 레큐퍼레이터 헤더에서 유동분배에 미치는 베인의 영향)

  • Jeong Young-Jun;Kim Seo-Young;Kim Kwang-Ho;Kwak Jae-Su;Kang Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.819-825
    • /
    • 2006
  • In a SOFC/GT (solid oxide fuel cell/gas turbine) hybrid power generation system, the recuperator is an indispensible component to enhance system performance. Since the expansion ratio to the recuperator core is very large, generally, the effective header design to distribute the flow uniformly before entering the core is crucial to guarantee the required performance. In the present study, we focus on the design of a diffuser type recuperator header with a 90 degree turn inlet port. To reduce the flow separation and recirculation flows, multiple horizontal vanes are used. The number of horizontal vanes is varied from 0 to 24. The air flow velocity is measured at 40 points just behind the core outlet by using a hot wire anemometer. Then, the flow non-uniformity is evaluated from the measured flow velocity. The experimental results showed that inlet air velocity did not effect on relative flow non-uniformity. According to increasing the number of horizontal vanes, flow non-uniformity reduced about $40{\sim}50%$ than without using horizontal vanes.