• Title/Summary/Keyword: Required safety evacuation time

Search Result 48, Processing Time 0.024 seconds

A Study on the Comparative Analysis and Utilization of Evacuation Time according to Variation of Modelling of Behavior Modes: Focusing on the Case of Underground Parking Lot (행동모드 변화 모델링에 따른 피난시간 비교분석과 활용방안 연구: 지하 주차장 사례를 중심으로)

  • Gi-gyeong Koo
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.284-292
    • /
    • 2024
  • Purpose: Compared to general fires of the same size, underground parking lot fires are more likely to cause human and property damage and are not easy for firefighters to extinguish fire and save lives. This study attempted to find out how to secure the evacuation safety of parking lot users based on changes in the evacuation simulation behavior mode applied to evaluate the evacuation safety of the object. Method: Simulation for each CASE was performed using the Pathfinder program. Result: it was found that the higher the reference value, the higher the evacuation time, and Behavior showed an increase in time in SFPE mode rather than Steering mode. Priority was able to confirm an increase in time in priority designation rather than non-priority designation. Conclusion: The Required Safe Egress Time (RSET) for evaluating the evacuation safety of underground parking lots and the building evacuation design to ensure evacuation safety should be evaluated and reflected separately from Simulation's Behaviour Mode and Priority.

Optimization Method for Patient Placement by Floor in Elderly Care Hospital for Evacuation Safety (피난안전성을 위한 요양병원의 층별 환자배치에 대한 최적화방안)

  • Lee, Hong-Sang;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.3
    • /
    • pp.43-51
    • /
    • 2020
  • This study analyzed the appropriate placement method by floor for evacuating all occupants during the nighttime through evacuation simulation. The analysis results are as follows. First, when non-self evacuating patients were placed on the first floor, 266 patients and 6 workers were found to be evacuated after 460 seconds. This result shows that it is meaningful to place non-self evacuating patients on the lower floor with a time that is faster than 540 seconds, which is an evaluation criterion set using life Safety standards for human. This result is a time faster than the evaluation criteria of 540 seconds, which is set using the life safety standards, and it can be confirmed that it is meaningful to place non-self evacuating patients on the lower floor. Next, as a result of placing non-self evacuating patients from the first floor to the fourth floor, it was found that evacuation of all occupants required 460 seconds for the first floor, 834 seconds for the second floor, 1,508 seconds for the third floor, and 1,915 seconds for the fourth floor. These results indicate that the placement of non-self evacuating patients on the rest of the floors, except for the first floor, can lead to dangerous results in excess of 540 seconds, which is a flashover time. As a result, it is necessary to place non-self evacuating patients on a lower floor for safe evacuation. The study has limitations except for comparative analysis of changes in evacuation time due to changes in the number of workers at eldery care hospitals and situations in which fire-fighting facilities such as sprinkler facilities operated. It is necessary to study the evacuation time linked to the operation of the fire-fighting facilities and the evacuation time according to the change in the number of workers in the future.

The Need for Developiong Scenarios through Social Welfare Facility Evacuation Modeling (사회복지관 피난모델링을 통한 시나리오 개발의 필요성)

  • Jin-Ha Kim;Seo-Young Kim;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.29-38
    • /
    • 2023
  • Social welfare facilities are used by a wide range of local residents, including vulnerable populations such as the elderly, children, and people with disabilities. During emergencies like fires, confusion can arise as these individuals try to evacuate. Evacuation simulation results have shown that utilizing evacuation systems based on specific evacuation scenarios can significantly decrease the time required for evacuation compared to general evacuation procedures. By anticipating potential fires based on changes in social and facility environments, appropriate evacuation scenarios can be developed and applied to evacuation systems, thus contributing to the safety and security of individuals during emergencies. In conclusion, for social welfare facilities that serve a large number of people, it is necessary to expand the focus on performance-based design depending on the size of the facility, and to continuously develop and train for appropriate evacuation scenarios that align with changing facility environments.

Risk Evaluation and Analysis on Simulation Model of Fire Evacuation based on CFD - Focusing on Incheon Bus Terminal Station (CFD기반 화재 대피 시뮬레이션 모델을 적용한 위험도 평가 분석 -인천터미널역 역사를 대상으로)

  • Kim, Min Gyu;Joo, Yong Jin;Park, Soo Hong
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.43-55
    • /
    • 2013
  • Recently, the research to visualize and to reproduce evacuation situations such as terrorism, the disaster and fire indoor space has been come into the spotlight and designing a model for interior space and reliable analysis through safety evaluation of the life is required. Therefore, this paper aims to develop simulation model which is able to suggest evacuation route guidance and safety analysis by considering the major risk factor of fire in actual building. First of all, we designed 3D-based fire and evacuation model at a subway station building in Incheon and performed fire risk analysis through thermal parameters on the basis of interior materials supplied by Incheon Transit Corporation. In order to evaluate safety of a life, ASET (Available Safe Egress Time), which is the time for occupants to endure without damage, and RSET (Required Safe Egress Time) are calculated through evacuation simulation by Fire Dynamics Simulator. Finally, we can come to the conclusion that a more realistic safety assessment is carried out through indoor space model based on 3-dimension building information and simulation analysis applied by safety guideline for measurement of fire and evacuation risk.

Vertical Evacuation Speed in Stairwell of a High-rise Office Building (업무용 고층건물 계단실의 보행속도에 관한 연구)

  • Joung, Suck-Hwan;Yoon, Myong-Oh
    • Fire Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.13-20
    • /
    • 2015
  • As building height is increased, more careful decisions about the required safe egress time is needed for evacuation. This study analyzed the influence of three training sessions on the vertical speed of evacuation in the high rise building. Evacuation experiments were done in a high-rise office building in Seoul, and we analyzed the vertical evacuation speed as a function of density using a camera. Controlled and uncontrolled total evacuation were compared using the Pathfinder simulation. The process of repeated training, changed the specific stair utilization rate from 6.3% to 39.5%. The vertical evacuation speed as a function of density was analyzed using the equation s = 1.004 ? 0.288D, which is very similar to the equation used in a different study. The total evacuation time of the special controlled total evacuation was reduced by about 25% compared to the simultaneous evacuation.

Analysis of the Evacuation Safety in a Fire at Welfare Center for Disabled (장애인복지관 화재 시 피난안전성 분석)

  • Park, Sunah;Lee, Jai Young
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.315-322
    • /
    • 2021
  • This study analyzes the Required Safe Egress Time (RSET), in the event of a fire at a welfare center for the disabled, using the emergency passage according to the floor arrangement of users to evaluate the safety and the difference in RSET for each emergency passage using the Pathfinder simulation program to suggest an efficient evacuation method. As a result of RSET, it was found that there is no problem in evacuation safety for the current state of the facility's personnel allocation by satisfying the standard RSET in case of fire, and evacuation can be completed safely by evacuating through stairs rather than using elevators if possible. It is necessary for employees to be provided sufficient education and training in advance so that they can evacuate effectively with the disabled in case of fire. This study gives significance in saving many precious lives and safely evacuate in case of fire as evacuation routes were secured through the design, construction and operation of facilities for the disabled and the RSET was shortened through regular evacuation practices. It is necessary to discuss the further RSET studies based on the automatic fire shutters open or not when a fire occurs at a specific location following the installation of automatic fire shutter at the entrance of each floor of the facilities.

A Study on the Awareness of Fire Safety and Evacuation Guide System (화재안전의식 및 피난유도 시스템에 대한 연구)

  • Baek, Eun-Sun;Baek, Geon-Jong;Shin, Hoon;Song, Min-Jeong;Kook, Chan;Kim, Sun-Woo
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.45-53
    • /
    • 2010
  • The purpose of this study is to find out the most effective evacuation alarm sound which is the one of the most important element of the evacuation guidance system as a fundamental mechanism to minimize the damages of a fire. In this regard, a survey was conducted against the firefighting officers and the general public with questions about the general awareness of fire and their preference to various kinds of fire alarm sounds. The result showed that 1) even though the awareness of the interviewees on fire was improving while there were in familiar places like homes or works. But, when they were situated in unfamiliar locations, the fire safety awareness could not be deemed to be strong. This in turn calls for the education of the public and improvement of the existing policies for the enhancement of the fire related safety awareness in unfamiliar environments. 2) For the question about the possible time they could survive in a fire or the time required for safe evacuation, it turned out that the interviewees were thinking of the time required for evacuation to be short, which calls for proper actions. 3) When the visibility in a fire situation is highly limited, the most preferred answer for the alarm sound was a female voice, saying "The emergency exit is this way," accompanies with flashing lights of sirens for the emergency evacuation guidance.

A Study on the Public Evacuation Time Estimates for Radiological Emergency Plan and Preparedness of Wolsong Nuclear Power Plant Site (방사선 비상계획을 위한 월성원전 주변 주민 소개시간 예측 연구)

  • Lee, Gab-Bock;Bang, Sun-Young;Chung, Yang-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.2
    • /
    • pp.79-88
    • /
    • 2007
  • When an accident occurs at nuclear power plant and radionuclide material is released to the area around the plant, public evacuation is considered as a measure to protect the safety of the residents nearby. This study draws factors required to estimate evacuation time and make estimation of the time to evacuate all residents from the EPZ of Wolsong site in consideration of traffic condition in the neighborhood and on the basis of field data around the site for each factor. The traffic capacity and the traffic volume by season were investigated for the traffic analysis and simulation within EPZ of Wolsong site. As a result, the background traffic volume by season were established. To estimate TGT(Trip Generation Time), the questionnaire surveys were carried out for resident and transient. The TSIS code was applied to traffic analysis in the events of daytime/night and normal/adverse weather under normal day/summer peak traffic condition. The results showed that the evacuation time required for total vehicles to move out from EPZ took generally from 118 to 150 minutes. The evacuation time took longer maximum 17 minutes at night than daytime during summer peak traffic.

RSET Analysis of Factory Workbench Layout Configuration (공장 작업대 배치 형태에 따른 RSET 분석)

  • WOO-GI JANG;DEOK-JIN JANG;HA-SUNG KONG
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.479-485
    • /
    • 2023
  • Although fire incidents occur frequently in factory buildings, the focus has primarily been on property damage rather than human casualties. In this study, we conducted an analysis of RSET(Required Safe Egress Time) variation by examining the relocation of workbenchs using evacuation simulations. The results demonstrated that a simple change in workbench placement led to different RSET and variations in the feasibility of evacuation. Specifically, arranging workbenchs in a vertical configuration reduced travel time for workers and minimized total evacuation time. The hybrid layout of "vertical-horizontal" exhibited the shortest RSET, while the "horizontal-vertical" configuration resulted in the longest RSET. These research findings are significant as they provide practical alternatives to decrease RSET in small-scale factories where additional investments beyond essential safety equipment may pose challenges due to budget constraints. However, it is important to note that this study solely focused on comparing RSET while controlling for all other factors, without considering real-life fire simulations. Therefore, further research is necessary to integrate fire simulations and conduct comprehensive assessments of evacuation safety.

A study of evacuation time in a subway carriage fire (지하철 객차 화재발생시 피난 시간에 대한 연구)

  • Kim, Seong-Ryul;Roh, Jae-Seong;Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1313-1318
    • /
    • 2007
  • Recently, the terror frequently has taken place for unspecified individuals as modern society is complicated. Especially, in case of a subway carriage fire as Daegu subway fire, because smoke spread path usually coincide with passenger's evacuation path, it will reduce visibility and can cause fatalities by asphyxiation. This study performs not only fire simulation with CFAST V6 but also evacuation simulation with EXODUS V4 for the purpose of taking measures for passengers's life safety in subway fire. As a result of evacuation simulation without fire, evacuation times are 36 s for EXODUS V4 and simple hand calculation, and when fire is occurred fire, 101 persons evacuated in 32 s. Therefore, a countermeasure of evacuation in subway carriage fire is required to repression of fire and emergency exit.

  • PDF