• Title/Summary/Keyword: Required Operational Capability

Search Result 63, Processing Time 0.028 seconds

The Selection of Representative Drive Course for Small Tactical Vehicles Through Movement Condition and Operational Environment Analysis (소형전술차량 기동조건 및 운용환경 분석을 통한 대표주행경로 선정)

  • Kim, Juhee;Lee, Jongwoo;Yoo, Samhyeun;Park, Ji-il;Shin, Hyunseung;Kwon, Youngjin;Choi, Hyunho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.341-352
    • /
    • 2019
  • LTV(Light Tactical vehicle) operating in our military requires higher levels of performance and durability to withstand harsher conditions than ordinary vehicles, as they must travel on both rough-train and off-road as well as on public roads. Recently, developed light tactical vehicle is developed by a variety of test evaluations in order to satisfy ROC(Required Operational Capability) by the requirement military group. However, there is no standardized driving test condition for satisfying the durability performance of Korean tactical vehicle. Therefore, this study aims to provide basic data to establish reliable driving test conditions by analyzing the maneuver conditions and the driving data in order to select the representative drive course required. To do this, we analyzed the future operational environment, the area of operation analysis and the driving information of light tactical vehicle.

Structural Analysis of KARI General Small-scaled Rotor Test System (GSRTS) (KARI 축소 로터 시험장치(GSRTS) 구조해석)

  • Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2008
  • This paper describes the structural analysis results of KARI General Small-scaled Rotor Test System (GSRTS) operated in KARI to verify operational safety. This GSRTS was developed to conduct a froude and mach small-scaled rotor test. This analysis was performed to investigate the structural Factor of Safety for the various small-scale rotor system like articulated or hingeless rotor and to check the operational capability using given operational design load. Specially, drive system has several bearings, mechanical gears, shaft, etc. and these parts must be required to achieve an operational safety. The calculation was done by using geometric data and material properties by analytical method. This rotor test system should be operated within these calculated Factor of Safety. Furthermore, the operational limitation should be defined as applied to small-scale rotor system of KUH in future.

  • PDF

On an Improved Method for System Readiness Assesment to Meet Required Operational Capability in Weapon Systems Development (무기체계개발에서 작전운용성능을 만족시키기 위한 개선된 시스템성숙도 평가방법)

  • Kwon, Il-Ho;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3602-3610
    • /
    • 2013
  • The risk of failure in the development of modern weapon systems has been increasing as the demand on the capability and the resulting complexity of the weapons on the war fields are increasing drastically. The analysis of failure has indicated that the main causes can be the following: one is attributed to the unsatisfaction of the system operation concept; and the other is the use of premature technology. As such, DAPA in Korea is urging that the weapons systems development should meet the required operational capability (ROC) as a critical performance requirement. On the other hand, an approach to risk management is to use the technology readiness level (TRL) assessed for each individual technology alone. However, the method of TRL cannot assess the effect of integration between technologies and cannot be performed at system level, which is crucial to systems development. In order to improve the shortfalls, a concept of system readiness level (SRL) has been studied by introducing the technologies integration and also some forms of analysis of advanced degree of difficulty studied separately, but no model considering both of two reported yet. In this paper, under the framework of meeting the ROC, an improved SRL assessment model is presented, which is also considering the advanced degree of difficulty simultaneously. The application of the improved assessment method is discussed in connection with the life cycle of the weapon systems development in conformance with the ROC of DAPA.

On Enhancing Train-Centric Train Control System Development Process using DSM-based Safety Management (DSM 기법에 따른 안전 관리를 통한 차상중심 열차제어시스템 개발 프로세스의 개선에 관한 연구)

  • Kim, Joo-Uk;Oh, Seh Chan;Han, Seok Youn;Kim, Young-Min;Sim, Sang-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.129-138
    • /
    • 2016
  • The train-centric control systems development has some distinct points in that a big size of government budget is in general expended in there and the development duration seems to be long. In addition, the changes are ever made continuously in the capability and operational requirements for Trains. Thus, the impact of the potential changes in the required operational capability on the development activities can induce some type of project risks [7]. As such, proper management of project risk has been one of crucial subjects in the train systems development. All these notes combined together make it the significance of the safety management process be raised further up in the train-centric control systems development. As such, the underlying safety management process should be capable of appropriately handling the potential risks that can be created due to the unexpected changes and the long-term development period. The process should also be complemented for the safety consideration of train-centric control systems, for instance, stop. To study these aspect is the objective of the paper. To do so, a step-by-step approach to analyzing the safety management process is first presented. Then, to enhance the process some necessary and useful activities are added in terms of risk and safety management. Then, to pursue some enhancement on the process, a set of necessary and useful activities are added in terms of risk and safety management. The resultant process is further analyzed and tailored using a design structure matrix method. The resultant process is applied in a train-centric control development as a case study.

A Study on Developing a CER Using Production Cost Data in Korean Maneuver Weapon System (한국형 기동무기체계 양산비 비용추정관계식 개발에 관한 연구)

  • Lee, Doo-Hyun;Kim, Gak-Gyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.3
    • /
    • pp.51-61
    • /
    • 2014
  • In this paper, we deal with developing a cost estimation relationships (CER) for Korean maneuverable weapons systems using historical production cost. To develop the CER, we collected the historical data of the production cost of four tanks and five armored vehicles. We also analyzed the Required Operational Capability (ROC) of the weapons systems and chose cost drivers that can compare operational capabilities of the weapons systems We used Forward selection, Backward selection, Stepwise Regression and $R^2$ selection as the cost drivers which have the greatest influence with the dependent variables. And we used Principle Component Regression, Robust Regression and Weighted Regression to deal with multicollinearity and outlier among the data to develop a more appropriate CER. As a result, we were able to develop a production cost CER for Korean maneuverable weapons systems that have the lowest cost errors. Thus, this research is meaningful in terms of developing a CER based on Korean original cost data without foreign data and these methods will contribute to developing a Korean cost analysis program in the future.

Measurement and Analysis for 3-D RCS of Maritime Ship based on 6-DOF Model (6 자유도 모델에 기반한 운항중인 함정의 3차원 RCS 측정 및 분석 기법)

  • Gwak, Sang-yell;Jung, Hoi-in
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.429-436
    • /
    • 2018
  • The RCS value of maritime ship is indicator of ship's stealth performance and it should be particularly measured for navy ship to ensure survivability on the battlefield. In the design phase of the navy ship, a RCS prediction should be performed to reduce RCS value and achieve ROC(Required Operational Capability) of the ship through configuration control. In operational phase, the RCS value of the ship should be measured for verifying the designed value and obtaining tactical data to take action against enemy missile. During the measurement of RCS for the ship, ship motion can be affected by roll and pitch in accordance with sea state, which should be analyzed into threat elevation from view point of enemy missile. In this paper, we propose a method to measure and analyze RCS of ship in 3-dimensions using a ship motion measuring instrument and a fixed RCS measurement system. In order to verify the proposed method, we conducted a marine experiment using a test ship in sea environment and compared the measurement data with RCS prediction value which is carried by prediction SW($CornerStone^{TM}$) using CAD model of the ship.

RCS Overpressure Protection Analysis Using SEBIM POSRV (SEBIM POSRV를 이용한 원자로 냉각재계통의 과압보호 해석)

  • Kim, Chong-Hoon;Seo, Jong-Tae
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • The overpressure protection system for PWR should be designed with sufficient capacity to limit the pressure to less than 110% of the reactor coolant system design pressure during the most severe abnormal operational transient. In this study, the feasibility of adopting the SEBIM POSRV instead of the current spring loaded pop-opening safety valves to the ABB-CE designed 2825 MWt PWR is investigated for its overpressure protection capability. The required SEBIM POSRV size as well as its opening/closing setpoints are determined through a series of computer analyses using the LTC code which has been used for the overpressure protection analysis for Yonggwang units 3&4. The analysis results show that the overpressure protection system with monobloc SEBIM POS-RV can maintain the RCS pressure below 110% of the design pressure demonstrating its overpressure protection capability for the ABB-CE designed 2825 MWt PWRs.

  • PDF

Optimal Interval Censoring Design for Reliability Prediction of Electronic Packages (전자패키지 신뢰성 예측을 위한 최적 구간중도절단 시험 설계)

  • Kwon, Daeil;Shin, Insun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.1-4
    • /
    • 2015
  • Qualification includes all activities to demonstrate that a product meets and exceeds the reliability goals. Manufacturers need to spend time and resources for the qualification processes under the pressure of reducing time to market, as well as offering a competitive price. Failure to qualify a product could result in economic loss such as warranty and recall claims and the manufacturer could lose the reputation in the market. In order to provide valid and reliable qualification results, manufacturers are required to make extra effort based on the operational and environmental characteristics of the product. This paper discusses optimal interval censoring design for reliability prediction of electronic packages under limited time and resources. This design should provide more accurate assessment of package capability and thus deliver better reliability prediction.

A Evaluation Method of Operational Performance for Air-operated Gate Valve (공기구동 게이트밸브의 운전 성능평가 방법에 관한 연구)

  • Kim, Dae-Woong;Park, Sung-Keun;Kang, Shin-Cheul;Kim, Yang-Suk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.31-38
    • /
    • 2009
  • The valve performance has been evaluated from the theoretical equation based on design information such as packing thrust, spring preload and friction coefficient(${\mu}$). The accuracy of those data can be lower than that of vendor's initial design data. Especially, the friction coefficient can be degraded with time than the original condition and the valve performance calculated using the previous friction coefficient can not be available. Accordingly, this paper is describing a new performance evaluation method of valve based on diagnostic test data which are acquired from a site valve tested in static and dynamic conditions. Especially, this paper provides a new method using friction coefficient(${\mu}$) which is derived from the diagnostic test data acquired in the valve's design basis condition.

Design Improvement of Vent System for Korean Utility Helicopter's Anti-Explosion Fuel Tank (한국형 기동헬기 내폭발성 만족을 위한 연료 벤트 시스템 설계개선)

  • Kim, Joung-Hun;Kim, Chang-Young;Chang, Joong-Jin;Lee, Mal-Young;Shim, Dai-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.76-81
    • /
    • 2014
  • Military helicopter is exposed to the enemy gun firing due to the low altitude flight of contour flight, hovering & nap of the Earth flight, therefore it has the high possibility to be exploded by the gun firing. Recently the Anti-ballistic requirement is required to get the high level of safety from gun firing in required operational capability. The first military utility helicopter of SURION has the Anti-ballistic requirement and explosion proof. In order to meet the requirement, OBIGGS is adopted for the first time in KUH. It is proven that Anti-Explosion capability is satisfied to requirement for improving vent system which was insufficiently designed in development period and related to Anti-explosion.