• Title/Summary/Keyword: Reprogramming technique

Search Result 11, Processing Time 0.026 seconds

Investigating the role of Sirtuins in cell reprogramming

  • Shin, Jaein;Kim, Junyeop;Park, Hanseul;Kim, Jongpil
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.500-507
    • /
    • 2018
  • Cell reprogramming has been considered a powerful technique in the regenerative medicine field. In addition to diverse its strengths, cell reprogramming technology also has several drawbacks generated during the process of reprogramming. Telomere shortening caused by the cell reprogramming process impedes the efficiency of cell reprogramming. Transcription factors used for reprogramming alter genomic contents and result in genetic mutations. Additionally, defective mitochondria functioning such as excessive mitochondrial fission leads to the limitation of pluripotency and ultimately reduces the efficiency of reprogramming. These problems including genomic instability and impaired mitochondrial dynamics should be resolved to apply cell reprograming in clinical research and to address efficiency and safety concerns. Sirtuin (NAD+-dependent histone deacetylase) has been known to control the chromatin state of the telomere and influence mitochondria function in cells. Recently, several studies reported that Sirtuins could control for genomic instability in cell reprogramming. Here, we review recent findings regarding the role of Sirtuins in cell reprogramming. And we propose that the manipulation of Sirtuins may improve defects that result from the steps of cell reprogramming.

Factors Affecting the Efficiency of Animal Cloning by Somatic Cell Nuclear Transfer

  • Kim, Min-Goo;Park, Chi-Hun;Lee, Sang-Goo;Seo, Hee-Won;Choi, Yo-Han;Lee, Chang-Kyu;Ka, Hak-Hyun
    • Journal of Embryo Transfer
    • /
    • v.23 no.2
    • /
    • pp.67-76
    • /
    • 2008
  • Since the birth of Dolly using fully differentiated somatic cells as a nuclear donor, viable clones were generated successfully in many mammalian species. These achievements in animal cloning demonstrate developmental potential of terminally differentiated somatic cells. At the same time, the somatic cell nuclear transfer (SCNT) technique provides the opportunities to study basic and applied biosciences. However, the efficiency generating viable offsprings by SCNT remains extremely low. There are several explanations why cloned embryos cannot fully develop into viable animals and what factors affect developmental potency of reconstructed embryos by the SCNT technique. The most critical and persuasive explanation for inefficiency in SCNT cloning is incomplete genomic reprogramming, such as DNA methylation and histone modification. Numerous studies on genomic reprogramming demonstrated that incorrect DNA methylation and aberrant epigenetic reprogramming are considerably correlated with abnormal development of SCNT cloned embryos even though its mechanism is not fully understood. The SCNT technique is useful in cloning farm animals because pluripotent stem cells are not established in farm animal species. Therapeutic cloning combined with genetic manipulation will help to control various human diseases. Also, the SCNT technique provides a chance to overcome excessive demand for the organs by production of transgenic animals as xenotransplantation resources. Here, we describe the factors affecting the efficiency of generating cloned farm animals by the SCNT technique and discuss future directions of animal cloning by SCNT to improve the cloning efficiency.

Development of Reversing the Usual Order of Somatic Cell Nuclear Transfer in Mice

  • Kang, Ho-In;Sung, Ji-Hye;Roh, Sang-Ho
    • Journal of Embryo Transfer
    • /
    • v.26 no.1
    • /
    • pp.85-89
    • /
    • 2011
  • Somatic cell nuclear transfer (SCNT) is a useful tool for reproducing genetically identical animals or producing transgenic animals. Many reports have demonstrated that the efficiency of animal cloning by SCNT requires reprogramming of the somatic nucleus to a totipotent like-state. The SCNT-related reprogramming might mimic the natural reprogramming process that occurs during normal mammalian development. However, recent evidence indicates that the reprogramming event by SCNT is incomplete. In this study, the traditional SCNT procedure (TNT) was modified by injecting donor nuclei into recipient cytoplasm prior to the enucleation process to expose the donor nucleus before removing the karyoplast containing the chromosomes of the oocytes which might possess additional reprogramming factors, and this modified technique was named as reversing the usual order of SCNT (RONT). Other procedures including activation and in vitro culture were the same as TNT. Contrary to expectations, the rate of blastocyst development was not different significantly between RONT and TNT (8.6% and 7.9%, respectively). However, duration of micromanipulation performed by the same technician and equipments was remarkably reduced because the ruptured oocytes after nuclear injection were excluded from the enucleation process. This study suggests that RONT, a simplified SCNT protocol, shortens the duration of SCNT procedure and this less time-costing protocol may enable the researchers to perform murine SCNT easier.

Direct reprogramming of fibroblasts into diverse lineage cells by DNA demethylation followed by differentiating cultures

  • Yang, Dong-Wook;Moon, Jung-Sun;Ko, Hyun-Mi;Shin, Yeo-Kyeong;Fukumoto, Satoshi;Kim, Sun-Hun;Kim, Min-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.463-472
    • /
    • 2020
  • Direct reprogramming, also known as a trans-differentiation, is a technique to allow mature cells to be converted into other types of cells without inducing a pluripotent stage. It has been suggested as a major strategy to acquire the desired type of cells in cell-based therapies to repair damaged tissues. Studies related to switching the fate of cells through epigenetic modification have been progressing and they can bypass safety issues raised by the virus-based transfection methods. In this study, a protocol was established to directly convert fully differentiated fibroblasts into diverse mesenchymal-lineage cells, such as osteoblasts, adipocytes, chondrocytes, and ectodermal cells, including neurons, by means of DNA demethylation, immediately followed by culturing in various differentiating media. First, 24 h exposure of 5-azacytidine (5-aza-CN), a well-characterized DNA methyl transferase inhibitor, to NIH-3T3 murine fibroblast cells induced the expression of stem-cell markers, that is, increasing cell plasticity. Next, 5-aza-CN treated fibroblasts were cultured in osteogenic, adipogenic, chondrogenic, and neurogenic media with or without bone morphogenetic protein 2 for a designated period. Differentiation of each desired type of cell was verified by quantitative reverse transcriptase-polymerase chain reaction/western blot assays for appropriate marker expression and by various staining methods, such as alkaline phosphatase/alizarin red S/oil red O/alcian blue. These proposed procedures allowed easier acquisition of the desired cells without any transgenic modification, using direct reprogramming technology, and thus may help make it more available in the clinical fields of regenerative medicine.

Comparisons of Gene Expression Profiles between IVF and Cloned Embryo

  • Han, Dong-Wook;Kim, Eun-Ha;Kim, Kee-Pyo;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.10-10
    • /
    • 2002
  • The low efficiency of animal production by nuclear transfer technique is considered to be result of an incomplete reprogramming of the donor cell nucleus, which leads to a lack of, or abnormal expression of developmentally important genes. There are a lot of genes related to embryo development and some of these genes are regulated by imprinting. IGF2 (insulin like growth factor 2) and IGF2R (IGF2 receptor) that play important roles in preimplantation development are included in imprinted genes also. (omitted)

  • PDF

Reversine, Cell Dedifferentiation and Transdifferentiation (Reversine과 세포의 역분화 및 교차분화)

  • Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.394-401
    • /
    • 2020
  • As embryonic stem cells become pluripotent, they may cause tumor development when injected into a host. Therefore, researchers are focusing heavily on the therapeutic potential of tissue-specific stem cells (adult stem cells) without resultant tumor formation. Adult stem cells can proliferate for a limited number of generations and are restricted to certain cell types (multipotent). Mature tissue cell types in mammals cannot be intrinsically dedifferentiated or transdifferentiated to adult stem cells. Hence, the technology of induced pluripotent stem cells (iPSCs) for reprogramming adult somatic cells was introduced in 2006, ushering in a new era in adult stem cell research. Although iPSCs have been widely used in the field, the approach has several limitations: instability of the reprogramming process, risk of incomplete reprogramming, and exposure to transgenes integrated into the cell genome. Two years before the introduction of the iPSC technique, the synthetic small molecule 2,6-disubstituted purine, called reversine, was introduced. Reversine can induce the dedifferentiation of committed cells into multipotent progenitor-type cells by reprogramming and converting adult cells to other cell types under appropriate stimuli. Thus, it can be used as a chemically induced multipotent cell agent to overcome the limitations of iPSCs. Also, as an alternative therapeutic approach for treating obesity, it can be used to generate beige cells by browning white adipocytes. While reversine has the potential to act as an anti-cancer agent, this review focuses on its role in differentiation, dedifferentiation, and transdifferentiation in somatic cells.

Best Practice Organizations Cultural Effects on Innovation in Small Company (모범사례기업 조직문화가 작은기업의 기술혁신에 미치는 효과)

  • Jeong, Kyung-Sik
    • Journal of Industrial Convergence
    • /
    • v.13 no.3
    • /
    • pp.41-56
    • /
    • 2015
  • People have relatively continuous and stable characteristic and it can help understand personal attitude and behavior. As individual has individual personality and society has culture, in case of organization, there is organization culture that means unique cultural characteristic. And as if we need to know culture of that society to understand individual, we need to know organization culture of that organization to understand any organization. The reason why organization culture is acknowledged as modern theory of business management is-modern company has proposed management innovation, organization activation, company transformation, and company reprogramming as management strategy to cope actively with various and quickly changing environment that modern company face-that organization culture and management innovation, that is, the concept of new business management is highlighted for means and tools to solve such problems. Seeing contemporary situation, although organization culture of small company is being improved by management innovation, cause and effect that organization culture affect technique innovation still insufficient. The meaning of this research is, through a good example of organization culture, providing reason that efficient organization culture affect technique innovation of small company(medium and small company) and making people understand why this effect occur. Through this, I want to provide strategy and policy implication of company.

  • PDF

Directed Differentiation of Pluripotent Stem Cells by Transcription Factors

  • Oh, Yujeong;Jang, Jiwon
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.200-209
    • /
    • 2019
  • Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been used as promising tools for regenerative medicine, disease modeling, and drug screening. Traditional and common strategies for pluripotent stem cell (PSC) differentiation toward disease-relevant cell types depend on sequential treatment of signaling molecules identified based on knowledge of developmental biology. However, these strategies suffer from low purity, inefficiency, and time-consuming culture conditions. A growing body of recent research has shown efficient cell fate reprogramming by forced expression of single or multiple transcription factors. Here, we review transcription factor-directed differentiation methods of PSCs toward neural, muscle, liver, and pancreatic endocrine cells. Potential applications and limitations are also discussed in order to establish future directions of this technique for therapeutic purposes.

Siberian Sturgeon Oocyte Extract Induces Epigenetic Modifications of Porcine Somatic Cells and Improves Developmental Competence of SCNT Embryos

  • Kim, So-Young;Kim, Tae-Suk;Park, Sang-Hoon;Lee, Mi-Ran;Eun, Hye-Ju;Baek, Sang-Ki;Ko, Yeoung-Gyu;Kim, Sung-Woo;Seong, Hwan-Hoo;Campbell, Keith H.S.;Lee, Joon-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.266-277
    • /
    • 2014
  • Somatic cell nuclear transfer (SCNT) has generally demonstrated that a differentiated cell can convert into a undifferentiated or pluripotent state. In the SCNT experiment, nuclear reprogramming is induced by exposure of introduced donor nuclei to the recipient cytoplasm of matured oocytes. However, because the efficiency of SCNT still remains low, a combination of SCNT technique with the ex-ovo method may improve the normal development of SCNT embryos. Here we hypothesized that treatment of somatic cells with extracts prepared from the germinal vesicle (GV) stage Siberian sturgeon oocytes prior to their use as nuclear donor for SCNT would improve in vitro development. A reversible permeability protocol with $4{\mu}g/mL$ of digitonin for 2 min at $4^{\circ}C$ in order to deliver Siberian sturgeon oocyte extract (SOE) to porcine fetal fibroblasts (PFFs) was carried out. As results, the intensity of H3K9ac staining in PFFs following treatment of SOE for 7 h at $18^{\circ}C$ was significantly increased but the intensity of H3K9me3 staining in PFFs was significantly decreased as compared with the control (p<0.05). Additionally, the level of histone acetylation in SCNT embryos at the zygote stage was significantly increased when reconstructed using SOE-treated cells (p<0.05), similar to that of IVF embryos at the zygote stage. The number of apoptotic cells was significantly decreased and pluripotency markers (Nanog, Oct4 and Sox2) were highly expressed in the blastocyst stage of SCNT embryos reconstructed using SOE-treated cells as nuclear donor (p<0.05). And there was observed a better development to the blastocyst stage in the SOE-treated group (p<0.05). Our results suggested that pre-treatment of cells with SOE could improve epigenetic reprogramming and the quality of porcine SCNT embryos.

Direct somatic embryogenesis, plant regeneration and genetic transformation of Panax ginseng

  • Park, Yong-Eui;Yang, Deok-Chun;Park, Kwang-Tae;Soh, Woong-Young;Hiroshi Sano
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.85-89
    • /
    • 1999
  • Somatic embryogendesis is one of good examples of the basic research for plant embryo development as well as an important technique for plant biotechnology. This paper describes the direct somatic embryogenesis from zygotic embryos of Panax ginseng is reversely related to normal axis growth of zygotic embryos by the experiment of various chemical treatments. Under the normal growth condition, the apical tips of embryo axis produced an agar-diffusible substance, which suppressed somatic embryo development from cotyledons. Although the cells of zygotic embryos were released from the restraint of embryo axis, various factors were still involved for somatic embryo development. Electron microscopic observation revealed that the ultrastructure of cells of cotyledon epidermis markedly changed before initiation of embryonic cell division, probably indicating reprogramming events into the cells embryogenically determined state. Polar accumulation of endogenous auxin or cell-cell isolation by plasmolysis pre-treatment is the strong inducer for the somatic embryo development. The cells for the process of somatic embryogenesis might be determined by the physiological conditions fo explants and medium compositions. Direct somatic embryos from cotyledons fo ginseng were originated eithrer from single or multiple cells. The different cellular origin of somatic embryos was originated either from single or multiple cell. The different cellular origin of somatic embryos was depended on various developmental stages of cotyledons. Immature meristematic cotyledons produced multiple cell-derived somatic embryos, which developed into multiple embryos. While fully mature cotyledons produced single cell-derived single embryos with independent state. Plasmolysis pretreatment of cotyledons strongly enhanced single cell-derived somatic embryogenesis. Single embryos were converted into normal plantlets with shoot and roots, while multiple embryos were converted into only multiple shoots. GA3 or a chilling treatment was prerequisite for germination and plant conversion. Low concentration of ammonium ion in medium was necessary for balanced growth of root and shoot of plantlets. Therefore, using above procedures, successful plant regeneration of ginseng was accomplished through direct single embryogenesis, which makes it possible to produce genetically transformed ginseng efficently.

  • PDF